AI大模型对话(上下文)缓存能力

互联网应用中,为了提高数据获取的即时性,产生了各种分布式缓存组件,比如Redis、Memcached等等。

大模型时代,除非是免费模型,否则每次对话都会花费金钱来进行对话,对话是不是也可以参照缓存的做法来提高命中率,即时响应提高需求呢。

近日,月之暗面提出了上下文缓存的概念。

Context Caching (上下文缓存)是一种高效的数据管理技术,它允许系统预先存储那些可能会被频繁请求的大量数据或信息。这样,当您再次请求相同信息时,系统可以直接从缓存中快速提供,而无需重新计算或从原始数据源中检索,从而节省时间和资源。

不过定价还是比较贵的,按时长计算。特别是对于智能客户场景,用户提问的问题总归是趋于收敛的,所以可以节省不少资金花费。

在这里插入图片描述
同样,使用分布式缓存的做法,一样可以完成对话缓存,每次提问先经过模型比对,因为有语义理解能力,即便不是同一句话,但意思相同,一样可以认为是命中,命中后就可以直接从缓存中取出数据来响应用户。

Context Caching 特别适合于用频繁请求,重复引用大量初始上下文的情况,通过重用已缓存的内容,可以显著提高效率并降低费用。因为这个功能具有强烈的业务属性,我们下面简单列举一些合适的业务场景:

  1. 提供大量预设内容的 QA Bot,例如 Kimi API 小助手。
  2. 针对固定的文档集合的频繁查询,例如上市公司信息披露问答工具。
  3. 对静态代码库或知识库的周期性分析,例如各类 Copilot Agent。
  4. 瞬时流量巨大的爆款 AI 应用,例如哄哄模拟器,LLM Riddles。
  5. 交互规则复杂的 Agent 类应用,例如什么值得买 Kimi+ 等。
<think>好的,我现在需要回答用户关于如何让大语言模型保存对话记录的问题。根据用户提供的引用内容,特别是引用[1]提到的“记忆机制”和外部存储系统,我应该先解释基础模型本身没有长期记忆,所以需要系统层的解决方案。 首先,用户可能想知道具体的存储方案,比如数据库或文件系统。引用[2]中提到了Neo4j知识图谱,可以作为例子,说明图数据库的应用。另外,引用[3]中的text-to-SQL可能相关,但需要判断是否适用。不过,用户的问题更多是关于存储而非查询生成,所以可能不需要深入text-to-SQL,但可以提到结构化存储时使用SQL数据库。 然后,需要分点说明不同的存储方案,比如内存存储、数据库、文件系统等,并结合引用[1]中的外部记忆系统概念。引用[4]提到动态评估对话结果,这可以关联到缓存机制,比如最近对话缓存。 接下来,要确保回答符合用户要求的格式:行内数学公式用$...$,独立公式用$$...$$,虽然这个问题可能不涉及数学公式,但要注意其他格式要求,如中文回答和相关问题生成。 最后,生成相关问题时要围绕对话记录存储的扩展,比如性能优化、安全性、多轮对话处理等,参考用户提供的示例问题结构。 需要检查是否有遗漏的引用内容,并确保引用标识正确。例如,引用[1]和[2]直接相关,而引用[3]和[4]可能次要,但可以适当关联到结构化存储和动态决策。 现在组织内容,确保结构清晰,分点说明存储方案,并自然添加引用标识。可能的结构如下: 1. 系统层的外部存储 2. 具体实现方式(数据库、文件、内存) 3. 结构化与非结构化存储 4. 缓存机制 每个部分对应相关引用,如外部存储对应引用[1],数据库对应引用[2],结构化存储对应引用[3],缓存和动态决策对应引用[4]。 然后生成相关问题,例如如何优化性能、如何保证安全、如何处理多轮对话等。</think>大语言模型本身不具备长期记忆能力,但可以通过系统级设计实现对话记录的存储和调用。以下是主要实现方案: ### 一、对话记录存储的核心方案 1. **外部记忆系统架构** 在系统层构建独立的存储模块,通过API在每轮对话结束后将关键信息(如用户意图、实体、对话状态)持久化保存。例如,使用键值数据库(如Redis)存储最近5轮对话上下文缓存[^1]。 2. **结构化存储实现** ```python # 示例:使用SQLAlchemy保存对话记录到MySQL class DialogueRecord(Base): __tablename__ = 'dialogue_logs' id = Column(Integer, primary_key=True) session_id = Column(String(40)) user_input = Column(Text) model_response = Column(Text) timestamp = Column(DateTime) def save_dialogue(session_id, query, response): new_record = DialogueRecord( session_id=session_id, user_input=query, model_response=response, timestamp=datetime.now() ) session.add(new_record) session.commit() ``` 这种结构化存储支持后续的对话分析,如通过$SELECT * FROM dialogue_logs WHERE session_id='xxx'$查询历史记录[^3]。 3. **知识图谱整合** 使用图数据库(如Neo4j)存储用户画像和对话实体关系,例如将用户咨询的"商品A-属性-价格"三元组持久化存储,支持后续的个性化服务[^2]。 ### 二、多级存储策略 | 存储层级 | 数据示例 | 技术方案 | 保留时长 | |---------|---------|---------|---------| | 内存缓存 | 最近3轮对话 | Redis/Memcached | 30分钟 | | 会话存储 | 完整对话流 | MySQL/PostgreSQL | 7天 | | 长期归档 | 关键业务数据 | S3/MinIO | 永久 | ### 三、动态调用机制 在对话开始时,系统通过$WHERE session_id='xxx' ORDER BY timestamp DESC LIMIT 5$查询最近对话记录,将其作为上下文提示词注入模型输入[^4]。例如: ```text [历史对话] 用户:查询订单123状态 AI:订单已发货 [当前问题] 用户:预计什么时候送达? ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MavenTalk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值