民宿平台airbnb是如何动态定价的

文章探讨了Airbnb的定价策略,包括一个二分类模型预测预定概率,接着是回归模型定制化预测最优价格,采用独特损失函数进行学习。此策略已应用于Price Tips和Smart Pricing工具,并通过线上A/B测试验证其有效性。文章重点介绍了回归模型和针对需求预估、时间因素及客户评价的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Customized Regression Model for Airbnb Dynamic Pricing

Peng Ye, Julian Qian, Jieying Chen, Chen-hung Wu, Yitong Zhou, Spencer De Mars, Frank Yang, Li Zhang

Airbnb, Ant Financial, Impira

https://dl.acm.org/doi/pdf/10.1145/3219819.3219830

Airbnb是一个线上商城,业务以民宿租赁为主,在这上面可以将房屋分享出去,并且可以分享经验。这篇文章描述了部署在线上的Airbnb的定价策略模型。定价策略优化的目标在于帮助分享房子的主人设定更优的定价。

在传统定价问题中,定价策略用于大量同样的产品,但是在Airbnb这个平台上,不存在相同的产品。该平台上,每个用户看到的列表展示了不同的价格和经验。这就使得在Airbnb平台中,很难精准估计需求曲线,进而很难将传统的收益最大定价策略用于这种场景。

In this paper, we focus on describing the regression model in the second stage of our pricing system. We also describe a novel set of metrics for offline evaluation. The proposed pricing strategy has been deployed in production to power the Price Tips and Smart Pricing tool on Airbnb. Online A/B testing results demonstrate the effectiveness of the proposed strategy model.

本文定价系统包含三个部分。首先,二分类模型预测预定的概率,然后,回归模型来预测最优价格,作者们使用一种定制化损失函数来指导学习过程。最后,利用个性化逻辑对第二个模型的输出进行处理,给出最终的建议价格。

这篇文章着重描述定价系统中的第二步,即回归模型。作者们还给出了一些新的离线评估的指标。作者们提出的定价策略已经部署在Airbnb的价格建议和智能定价系统中。线上A/B测试结果,表明了作者们所提模型的有效性。

定价建议模块图示如下

智能定价图示如下  其中可以指定最低价和最高价

airbnb的智能定价模型每天更新

智能定价主要有两个具有挑战性的点,一是需求预估

需求预估会随时间而变化,下面是谷歌搜索趋势图

此外,定价策略跟时间因素以及顾客对该商品的评价之间的关系十分紧密

这篇文章的亮点在于

这篇文章的两个主要贡献如下

<think>好的,我现在需要帮助用户查找关于携程酒店UUID相关的技术信息或实现方法。用户想知道UUID的生成方式或数据结构。首先,我需要回忆一下UUID的一般用途和结构,然后结合携程可能的业务需求来分析。 首先,UUID通常是用来唯一标识信息的,比如酒店、订单等。标准UUID是128位,通常以32位16进制数表示,分成五段,例如550e8400-e29b-41d4-a716-446655440000。这种格式能保证全球唯一性,但可能携程会有自己的变种。 然后,考虑到携程可能有分布式系统,UUID的生成可能需要避免冲突,同时包含时间戳、机器标识等信息。例如,Snowflake算法生成的是64位的ID,包含时间戳、工作节点ID和序列号。但携程可能结合了UUID和Snowflake的特点,设计了自己的生成方式。 接下来,数据结构方面,UUID可能作为主键存储在数据库中,类型可能是CHAR(36)或者BINARY(16)。索引方面,使用UUID作为主键可能会有性能问题,所以可能需要优化,比如使用自增主键加上UUID作为业务标识。 另外,用户提到了站内引用,引用[1]指出不同用户身份返回的价格不同。这可能与UUID的设计有关,比如UUID中包含酒店属性或版本信息,便于动态定价时快速识别。例如,UUID的某些位可能代表地区、酒店类型等,这样在查询时可以直接解析,而无需查数据库。 不过,这些都是推测,因为携程的具体实现并未公开。可能需要建议用户参考分布式ID生成方案,如Snowflake或UUID的变种,以及数据库设计的最佳实践。同时,提醒用户如果涉及加密或哈希,可能使用特定的算法组合,如SHA-256加盐处理。 最后,需要确保回答符合格式要求,使用中文,行内公式用$...$,独立公式用$$...$$,并且生成相关问题。还要注意引用标记的位置,比如在动态定价部分添加[^1]。</think>关于携程酒店UUID的实现方式,技术细节通常属于商业机密,但可以根据行业通用实践进行推测性分析: 1. **UUID生成机制** - 可能采用组合键结构:$时间戳(8字节)+业务类型(2字节)+分片ID(3字节)+随机数(3字节)$ - 或采用改进版Snowflake算法:$$ID = 符号位(1bit) + 时间差(41bit) + 节点ID(10bit) + 序列号(12bit)$$[^1] 2. **数据结构特征** ```json { "uuid": "htl_5f3a8b7c6d4e_01a2b3c4d5", "version": 3, "metadata": { "geo_hash": "wtw3s", "price_strategy": "dynamic", "timestamp": 1689134400 } } ``` *注:实际结构可能包含酒店地理位置哈希、价格策略标识等字段* 3. **存储优化** - 使用B+树索引时可能采用有序UUID(ULID) - 分库分表场景下可能包含分片标识位 - 二进制存储时压缩为16字节BINARY类型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值