民宿平台airbnb是如何动态定价的

文章探讨了Airbnb的定价策略,包括一个二分类模型预测预定概率,接着是回归模型定制化预测最优价格,采用独特损失函数进行学习。此策略已应用于Price Tips和Smart Pricing工具,并通过线上A/B测试验证其有效性。文章重点介绍了回归模型和针对需求预估、时间因素及客户评价的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Customized Regression Model for Airbnb Dynamic Pricing

Peng Ye, Julian Qian, Jieying Chen, Chen-hung Wu, Yitong Zhou, Spencer De Mars, Frank Yang, Li Zhang

Airbnb, Ant Financial, Impira

https://dl.acm.org/doi/pdf/10.1145/3219819.3219830

Airbnb是一个线上商城,业务以民宿租赁为主,在这上面可以将房屋分享出去,并且可以分享经验。这篇文章描述了部署在线上的Airbnb的定价策略模型。定价策略优化的目标在于帮助分享房子的主人设定更优的定价。

在传统定价问题中,定价策略用于大量同样的产品,但是在Airbnb这个平台上,不存在相同的产品。该平台上,每个用户看到的列表展示了不同的价格和经验。这就使得在Airbnb平台中,很难精准估计需求曲线,进而很难将传统的收益最大定价策略用于这种场景。

In this paper, we focus on describing the regression model in the second stage of our pricing system. We also describe a novel set of metrics for offline evaluation. The proposed pricing strategy has been deployed in production to power the Price Tips and Smart Pricing tool on Airbnb. Online A/B testing results demonstrate the effectiveness of the proposed strategy model.

本文定价系统包含三个部分。首先,二分类模型预测预定的概率,然后,回归模型来预测最优价格,作者们使用一种定制化损失函数来指导学习过程。最后,利用个性化逻辑对第二个模型的输出进行处理,给出最终的建议价格。

这篇文章着重描述定价系统中的第二步,即回归模型。作者们还给出了一些新的离线评估的指标。作者们提出的定价策略已经部署在Airbnb的价格建议和智能定价系统中。线上A/B测试结果,表明了作者们所提模型的有效性。

定价建议模块图示如下

智能定价图示如下  其中可以指定最低价和最高价

airbnb的智能定价模型每天更新

智能定价主要有两个具有挑战性的点,一是需求预估

需求预估会随时间而变化,下面是谷歌搜索趋势图

此外,定价策略跟时间因素以及顾客对该商品的评价之间的关系十分紧密

这篇文章的亮点在于

这篇文章的两个主要贡献如下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值