Customized Regression Model for Airbnb Dynamic Pricing
Peng Ye, Julian Qian, Jieying Chen, Chen-hung Wu, Yitong Zhou, Spencer De Mars, Frank Yang, Li Zhang
Airbnb, Ant Financial, Impira
https://dl.acm.org/doi/pdf/10.1145/3219819.3219830
Airbnb是一个线上商城,业务以民宿租赁为主,在这上面可以将房屋分享出去,并且可以分享经验。这篇文章描述了部署在线上的Airbnb的定价策略模型。定价策略优化的目标在于帮助分享房子的主人设定更优的定价。
在传统定价问题中,定价策略用于大量同样的产品,但是在Airbnb这个平台上,不存在相同的产品。该平台上,每个用户看到的列表展示了不同的价格和经验。这就使得在Airbnb平台中,很难精准估计需求曲线,进而很难将传统的收益最大定价策略用于这种场景。
In this paper, we focus on describing the regression model in the second stage of our pricing system. We also describe a novel set of metrics for offline evaluation. The proposed pricing strategy has been deployed in production to power the Price Tips and Smart Pricing tool on Airbnb. Online A/B testing results demonstrate the effectiveness of the proposed strategy model.
本文定价系统包含三个部分。首先,二分类模型预测预定的概率,然后,回归模型来预测最优价格,作者们使用一种定制化损失函数来指导学习过程。最后,利用个性化逻辑对第二个模型的输出进行处理,给出最终的建议价格。
这篇文章着重描述定价系统中的第二步,即回归模型。作者们还给出了一些新的离线评估的指标。作者们提出的定价策略已经部署在Airbnb的价格建议和智能定价系统中。线上A/B测试结果,表明了作者们所提模型的有效性。
定价建议模块图示如下
智能定价图示如下 其中可以指定最低价和最高价
airbnb的智能定价模型每天更新
智能定价主要有两个具有挑战性的点,一是需求预估
需求预估会随时间而变化,下面是谷歌搜索趋势图
此外,定价策略跟时间因素以及顾客对该商品的评价之间的关系十分紧密
这篇文章的亮点在于
这篇文章的两个主要贡献如下