1 摘要:
相机运动估计是三维重建和SLAM的关键技术。为了使其可行,之前的工作通常使相机慢速运动,这限制了它在许多实际情况下的使用。文章提出了一种结合color、RGB-D和IMU的端到端三维重建系统,以实现快速传感器运动的鲁棒重建。系统使用EKF融合这三种数据,并采用迭代法联合优化匹配特征、相机姿态和几何场景。本文还提出了一种基于几何感知的patch变形算法来适应图像域内的外观特征,从而在快速的摄像机运动下实现更精确的特征匹配。实验表明,我们的patch变形算法提高了特征跟踪的精度,并且我们的三维重建方法在快速运动下优于现有的解决方案。
2 实现方法
图1. 红、绿、蓝箭头分别表示当前帧的输入、迭代操作和上一帧的patch
该方法主要由四部分组成:几何感知特征跟踪,探索滤波效果并进行斑块变形;滤波框架,解释卡尔曼预测和更新步骤;模型融合和patch更新。
- 2.1 几何感知特征跟踪
特征点法在图像模糊或者弱纹理条件下提取的特征数量不足,因此,提出了一种基于patch匹配方法进行特征跟踪(直接法的变形,2D->3D), 该方法考虑了较大的图像区域,但是大patch可能包含不同深层次的物体,会导致连续帧间的外观发生变化,尤其当相机运动较快时,会导致特征跟踪不准确。为了解决这个问题,文章将颜色与深度信息结合起来,将2D patch投影到3D中,并使用初始的相机运动将它们重投影到下一帧相机中。投影可以帮助我们对原始的patch进行变形来模拟外观的变化,通过变形后的patch可以方便、准确地实现对patch的跟踪。
2.1.1 SE效应和patch变形
当相机移动时,在不同的帧中会从不同的角度看到一个特征patch,因此不同帧中特征patch在图像坐标中的形状和位置会有所不同。与只考虑patch的2D平面信息不同,文章利用patch的3D几何来确定快速相机运动记录的图像之间的2D形状变形。
根据patches的不同几何形状和相机运动的不规则性,patches可以在连续帧中产生不同的变形。图2显示了三种典型的patch变形情况:
图2. 展示了相机运动和patches几何形状引起的patch SE效果。
case 1:如果patch内的像素深度没有显著差异,那么无论摄像机运动多么剧烈,在连续的两帧中,patch的总体形状都将保持不变;
case 2:当相机缓慢移动时,即使patch存在较大的深度方差,patch的二维形状仍然保持不变;
case 3:与case 2不同&#x