一、黎曼ζ函数概述
黎曼 ζ ζ ζ函数,由贝尔纳·黎曼提出,是复变函数论中的重要函数。定义为级数 1 1 s + 1 2 s + 1 3 s + 1 4 s + … \displaystyle\frac{1}{1^s} + \frac{1}{2^{s}} + \frac{1}{3^{s}} + \frac{1}{4^{s}} + \ldots 1s1+2s1+3s1+4s1+…,对于实部大于 1 1 1的 s s s收敛。 ζ ζ ζ函数在该区域内有解析表达式,对复数域的解析延拓揭示其更深层次的性质。引发了著名的黎曼猜想,与数论和素数分布密切相关。 ζ ζ ζ函数是数学研究的关键对象,具有广泛的应用和深刻的数学内涵。
二、黎曼ζ函数性质
黎曼的 ζ ζ ζ函数,通常表示为 ζ ( s ) ζ(s) ζ(s),是数学中的一个特殊函数,由德国数学家贝尔纳·黎曼(Bernhard Riemann)在1859年提出。这个函数对于复变函数论、数论和分析数学等领域都具有重要的意义。
ζ ( s ) ζ(s) ζ(s)的定义域是复数域,具体表达式如下: ζ ( s ) = 1 1 s + 1 2 s + 1 3 s + + 1 4 s + … = ∑ n = 1 ∞ 1 n s \displaystyle\zeta(s) = \frac{1}{1^s} + \frac{1}{2^{s}} + \frac{1}{3^{s}} + + \frac{1}{4^{s}} + \ldots=\sum_{n=1}^\infty\frac{1}{n^s} ζ(s)=1s1+2s1+3s1++4s1+…=n=1∑∞ns1
其中, s s s是一个复数。当实部(复数的实部)大于 1 1 1时,级数是收敛的;当实部小于等于 1 1 1时,级数发散。这就导致了ζ(s)在复平面上有不同的性质。
- 当 s = 1 s=1 s=1时, ζ ( 1 ) = 1 1 + 1 2 + 1 3 + + 1 4 + … = ∑ n = 1 ∞ 1 n \displaystyle\zeta(1) = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + + \frac{1}{4} + \ldots=\sum_{n=1}^\infty\frac{1}{n} ζ(1)=11+21+31++41+…=n=1∑∞n1,称为调和级数,是发散的
- 当 s = 2 s=2 s=2时, ζ ( 2 ) = 1 1 2 + 1 2 2 + 1 3 2 + + 1 4 2 + … = ∑ n = 1 ∞ 1 n 2 \displaystyle\zeta(2) = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + + \frac{1}{4^2} + \ldots=\sum_{n=1}^\infty\frac{1}{n^2} ζ(2)=121+221+321++421+…=n=1∑∞n21,称为巴塞尔级数,收敛于一个确定的值,即 ζ ( 2 ) = π 2 6 \displaystyle\zeta(2) = \frac{\pi^2}{6} ζ(2)=6π2这个结果是由欧拉首次证明的,而且这个问题在数学分析和数学物理中具有重要的地位。
- 当 s = 4 s=4 s=4时, ζ ( 4 ) = 1 1 4 + 1 2 4 + 1 3 4 + + 1 4 4 + … = ∑ n = 1 ∞ 1 n 4 \displaystyle\zeta(4) = \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + + \frac{1}{4^4} + \ldots=\sum_{n=1}^\infty\frac{1}{n^4} ζ(4)=141+241+341++441+…=n=1∑∞n41,这个级数,欧拉也算出来了,结果是 π 4 90 \displaystyle\frac{\pi^4}{90} 90π4
- 当 s = 6 s=6 s=6时, ζ ( 6 ) = 1 1 6 + 1 2 6 + 1 3 6 + + 1 4 6 + … = ∑ n = 1 ∞ 1 n 6 \displaystyle\zeta(6) = \frac{1}{1^6} + \frac{1}{2^6} + \frac{1}{3^6} + + \frac{1}{4^6} + \ldots=\sum_{n=1}^\infty\frac{1}{n^6} ζ(6)=161+261+361++461+…=n=1∑∞n61,这个级数,欧拉也算出来了,结果是 π 6 945 \displaystyle\frac{\pi^6}{945} 945π6
- 当 s = 8 s=8 s=8时, ζ ( 8 ) = 1 1 8 + 1 2 8 + 1 3 8 + + 1 4 8 + … = ∑ n = 1 ∞ 1 n 8 \displaystyle\zeta(8) = \frac{1}{1^8} + \frac{1}{2^8} + \frac{1}{3^8} + + \frac{1}{4^8} + \ldots=\sum_{n=1}^\infty\frac{1}{n^8} ζ(8)=181+281+381++481+…=n=1∑∞n81,这个级数,欧拉也算出来了,结果是 π 8 9450 \displaystyle\frac{\pi^8}{9450} 9450π8
ζ(s)在实部大于1的情况下有解析表达式,称为黎曼 ζ 函数: ζ ( s ) = ∑ n = 1 ∞ 1 n s = ∏ p 1 1 − p − s \displaystyle\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} \frac{1}{1 - p^{-s}} ζ(s)=n=1∑∞ns1=p∏1−p−s1,其中,右侧的乘积涉及了所有素数 p p p。
最著名的性质之一是, ζ ( s ) ζ(s) ζ(s)在实部大于1的区域内有解析延拓,即可以通过解析方法扩展到实部小于等于1的区域,这样就得到了 ζ ( s ) ζ(s) ζ(s)的广义定义。 ζ ( s ) ζ(s) ζ(s)的零点和极点的分布,特别是它在实部为1的直线上的零点(黎曼猜想)引发了许多关于素数分布的深刻问题。这些性质使得黎曼 ζ ζ ζ 函数成为数学研究中一个非常重要的对象。