基因组Masked作用

Masked, soft-masked 和 unmasked
Ensembl 参考基因组有三大类,masked, soft-masked and unmasked。一般而言,比对的时候推荐使用unmasked 参考基因组。Masking用于检测和隐藏散布的重复序列和低复杂度的DNA区域,以便可以使用比对工具对其进行正确处理。(Masking 这个词不太好翻译,意思见下面引用原文)

“Masking is used to detect and conceal interspersed repeats and low complexity DNA regions so that they could be processed properly by alignment tools.”

Masked genome
Masked基因组也分两类,Masked, soft-masked。

Masked 基因组,也叫 hard-masked DNA sequences,重复和低复杂基因组区域被识别出来并用许多的‘N’代替。使用masked 基因组可能会造成错误的read mapping和变异识别 (variant calls)。

我们不建议你使用masked genome,因为它缺失了一些信息(如在比对结束后,有些unique序列并非真正的unique序列),无法保证100%的准确性和敏感性。此外,它可能会提高了falsely mapped reads的数量。

soft-masked genome
soft masked genomes 中的重复和低复杂基因组区域则是用小写字母替换了原有的大写字母。

soft-masked genome包含了用小写字母标记的重复序列,因此使用soft-masked genome可提高比对质量,且不会损害敏感性。但是应该注意,大多数比对工具都没有考虑到soft-masked区域,例如BWA,tophat,bowtie2等工具在比对时始终使用所有碱基,无论它们是否为小写核苷酸。这就是为什么与unmasked genome相比,使用soft-masked genome并没有实际的好处。有时候你也可以看到repeat-masked genome,这是用特别的工具如RepeatMasker, 进行masking得到的。RepeatMasker会遍历DNA序列,寻找重复序列和低复杂度区域。默认参数的情况下,会用‘N’替代。

unmasked genome
建议使用unmasked genome,如果你不想丢失信息。如果你想过滤数据,最好是在比对后进行。

例如:WES分析,我们建议使用最新的unmasked参考基因组。

一句话总结:用unmasked genome就可以了,使用最新版本的基因组时,需要看看相应的注释文件是否也已经更新。

### Masked 技术在不同领域中的应用场景 #### 数据处理中的应用 Masking 在数据处理中主要用于保护敏感信息。通过对原始数据集中的某些字段进行遮蔽或替换,可以防止未经授权的数据访问者获取真实的信息。例如,在金融行业中,信用卡号或其他个人身份识别信息可以通过掩码技术隐藏部分内容,只显示最后几位数字以便核对用途[^3]。 #### 图像处理中的遮罩操作 在图像处理方面,mask 主要用来定义哪些区域应该被保留或者修改。具体来说: - **分割与编辑**:利用 mask 可以精确地选取图片的一部分来进行特效添加、颜色调整或是其他形式的艺术创作。 - **合成效果**:当涉及到多张照片拼接时,mask 能帮助平滑过渡边界线,使最终产物看起来更加自然和谐。 - **人脸识别和交换**:正如提到的人脸交换技术,mask 是实现这一功能的重要组成部分之一。它能够精准定位并提取出待替换的脸部轮廓及其特征点位置,从而确保新旧面孔之间的无缝融合而不影响到周围环境和其他物体的表现[^1]。 #### 隐私保护措施下的 masked 操作 为了保障用户隐私安全,许多应用程序和服务提供商采用了基于 masking 的策略来限制个人信息暴露范围。比如社交媒体平台允许用户上传经过模糊化处理后的头像;医疗保健机构则会采用类似的手段来匿名化病患记录,既满足了法律合规性的要求又不影响正常的业务流程运作[^4]。 ```python import numpy as np from PIL import Image, ImageDraw def apply_mask(image_path, mask_area): img = Image.open(image_path).convert('RGBA') draw = ImageDraw.Draw(img) # Create a transparent layer with the same size of image. overlay = Image.new('RGBA', img.size, (0, 0, 0, 0)) drawing_layer = ImageDraw.Draw(overlay) # Draw rectangle on top-left corner to simulate 'masked' area. drawing_layer.rectangle(mask_area, fill=(255, 255, 255, 180)) combined_image = Image.alpha_composite(img, overlay) return combined_image ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值