1简介
随着人工智能技术的飞速发展,大语言模型(Large Language Models, LLMs)逐渐从云端走向本地,为开发者、研究者和技术爱好者提供了更灵活、更私密的应用可能。国产DeepSeek 作为一款高效且功能强大的开源大模型,凭借其毫不逊色于Chatgpt的推理能力和对中文场景的深度适配,成为许多用户探索本地智能化的首选工具。
然而,对于非专业开发者或刚接触本地部署的用户而言,复杂的配置流程、环境依赖和资源管理往往令人望而却步。本文旨在通过极简的步骤、清晰的说明和实用的技巧,帮助小白用户在最短时间内完成从零部署的流程。
2环境介绍
windows:win11
3安装ollama
Ollama 是一个提供开源、简便且高效的工具平台,旨在使开发者能够在本地环境中运行和部署大型语言模型(LLMs)。Ollama 可以让用户轻松地运行一些主流的、开源的 LLM 模型,而无需依赖云服务,支持在本地服务器或个人计算机上进行推理任务。因此我们deepseek的载体就是ollama。
在官网下载ollama(安装包也可在本文附录A获取)
https://ollama.com/
安装ollama
4安装deepseek模型
打开ollama官网,右上角models找到deepseek模型
选择模型版本,在人工智能领域,模型名称中的 1.5B、7B、8B 等数字代表模型的参数量(Parameters),其中 B 是英文 Billion(十亿) 的缩写。参数越多,模型通常更“聪明”(能处理更复杂的任务),但对硬件资源(显存、内存)的要求也更高。个人用户可优先 7B(通用性最佳),若设备较弱则选 1.5B,开发者可选 8B。
以下是各版本的介绍
找到对应的命令,复制
然后输入到cmd中:
ollama run deepseek-r1:1.5b
如果是7b,以此类推:
ollama run deepseek-r1:7b
需要等待一段时间下载
5使用deepseek
打开cmd,输入所下版本同样的命令,则可以使用deepseek:
ollama run deepseek-r1:1.5b
6ollama大模型安装路径更改
如果我们使用windows系统安装,ollama默认安装在系统盘,而往往系统盘的容量不够大,我们可以将deepseek安装到其他盘中,但目前,ollama
本身并没有提供直接的、官方的选项来修改模型存储路径。我们可以使用符号链接的方式将对应文件夹链接到D盘文件夹,这样ollama读写文件只会读写对应D盘的链接文件夹。
首先,我们找到ollama模型的安装位置:
Linux/macOS:` `~/.ollama/``Windows:` `C:\Users\<YourUser>\.ollama\
删除models文件夹:
在D盘创建一个新文件夹,如
D:\OllamaModels\
用管理员打开cmd,进行符号链接,然后再下载deepseek文件夹:
mklink /D C:\Users\<YourUser>\.ollama D:\OllamaModels
7写在最后
本文主要介绍了 DeepSeek 的最简安装方法,后续将继续更新,介绍如何将 DeepSeek 集成到图形化界面中。
附录A
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓