学大模型的门槛,又被打下来了!

2025年,AI大模型不仅在取代传统CRUD开发模式,也在重构30+程序员的职业命运!

  • 业务转型要求用RAG搞知识库,你不会,傻眼了;

  • 接手AI项目,不知道怎么选预训练模型、准备多少数据;

  • 想转型大模型应用开发工程师等岗位,没0-1项目经验……

等待程序员们的,不仅有技术焦虑,还有生存危机!

现在会用MCP都已经不是新鲜事了,更何况曾经热门的开发框架、大数据工具等,已不再是就业的金钥匙。制造、医疗、金融等各行业都在加速AI应用落地,未来企业更看重能用AI大模型技术重构业务流的人才。

最近科技巨头英特尔宣布裁员2万人,传统岗位不断缩减,但AI相关技术岗疯狂扩招,有3-5年经验,大厂薪资就能给到50K*20薪!

图片

不出1年,“有AI项目经验”将成为投递简历的门槛。

风口之下,与其像“温水煮青蛙”一样坐等被行业淘汰,不如先人一步,掌握AI大模型原理+应用技术+项目实操经验,“顺风”翻盘!

大模型能真正解决什么问题?各行业有怎样的落地场景?为你展示如何利用RAG、Fine-tuning的技术来改善大语言模型的使用!解析大模型底层原理,和技术架构!剖析AI技术的应用场景,用实战经验落地AI技术。

从GPT到最火的开源模型,让你从容面对AI技术革新!

你会看到,一个个人开发者可以以怎样的力量撬动AI原生应用的全栈开发!

  • Agent:是衡量大语言模型“从量变到质变”的关键,是针对特定场景的AI解决方案。在不少互联网厂商内部,智能客服都是他们最先尝试的企业级Agent项目。

  • RAG:主要应用在那些需要不断更新知识的密集场景或特定领域,它最大的优势就是不需要针对特定任务重新训练大语言模型。

  • Function Call:是指运行一段具有特定功能的代码块的行为,以增强其处理能力,实现更复杂的任务,使大模型能够集成外部工具和资源,提升交互性和实用性。

图片

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

### 关于大型语言模型的使用指南 对于希望深入了解并有效利用大型语言模型(LLMs)的人来说,《大规模语言模型:从理论到实践》提供了详尽的内容,涵盖了构建和优化这些复杂系统的各个方面[^1]。此书不仅适合初者入门,也能够帮助有一定经验的技术人员解决实际应用中的难题。 另外,《动手大模型Dive into LLMs》一书采用循序渐进的方式介绍如何操作LLM,书中包含了大量实例练习以及详细的解释说明,使得读者可以在实践中习掌握相关技能。这类资源非常适合那些希望通过具体案例来加深理解的习者。 除了阅读专门针对LLM编写的书籍外,还可以探索其他形式的教材料。例如,在线课程平台经常提供最新的技术讲座和技术分享视频;而GitHub上也有不少由开发者维护的开源项目文档,它们往往记录了创建者的宝贵经验和技巧,这些都是不可多得的习资料。 当涉及到简化编程工作流程方面时,现代的大规模语言模型确实展现出了巨大潜力。过去可能需要耗费大量时间去精心设计复杂的正则表达式规则才能完成的任务,如今借助恰当的提示词就能轻松达成目标[^2]。这种转变极大地提高了软件开发效率,并降低了进入门槛。 如果发现当前使用的模型无法满足特定需求,则不妨考虑切换至更大规模的预训练版本。一般来说,较大的模型拥有更强的表现力,能够在更多样化的场景下给出高质量的回答,同时更好地捕捉输入数据之间的细微差别[^3]。 最后值得一提的是,像Meta这样的企业为推动整个领域的发展做出了重要贡献。该公司致力于开放源码运动,将其研发成果无私共享给全球研究界,这对于促进技术创新具有深远意义[^4]。 ```python # 示例代码展示了一个简单的交互界面,用于向用户提供有关LLM的信息查询服务。 def llm_info_query(): query = input("请输入您想要了解的主题:") response = "关于{}的相关信息如下:".format(query) # 这里可以根据用户的询问调用相应的API接口获取最新资讯 print(response) llm_info_query() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值