构造式隐写
广州大学|秘密信息—生成轮廓—构造图像:基于物体轮廓线自动生成的图像生成式隐写框架(TIFS 2023)
Generative Steganography via Auto-Generation of Semantic Object Contours | IEEE Journals & Magazine | IEEE Xplore 秘密信息--生成轮廓(解耦特征)--构造图像:
基于图像轮廓线自动生成的图像生成式隐写框架。
此篇文章也有一篇母版
前人工作:
自适应图像隐写:基于生成对抗网络GAN的失真函数学习框架【10】。但是残留的修改痕迹很容易被Rich Model【13】以及XuNet【14】等隐写分析工具成功检测。为了提高隐写的安全性,提出了构造式隐写的全新思路【15-16】,以隐写信息为驱动直接构造出一幅全新的图像(含密):基于纹理、指纹,但是不常见,我们更加追求真实自然的图像。
如果将密文编码为类别标签,然后再去利用ACGAN生成含密图像,但隐藏容量小。
由此,文章想到了两阶段式隐写,1)轮廓生成(基于LSTM);2)图像生成(基于pix2pix)
文章以自然山脉图像中提取轮廓数据,训练LSTM,获得轮廓自动生成模型,然后建立基于pix2pix建立轮廓--图像可逆变换模型。
2.相关技术
2.1循环神经网络
网络会记忆之前时刻的信息,并将其应用于当前输出的计算中。原理如图:

即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。
但是循环神经网络RNN在处理较长序列时,由于梯度返回困难,容易产生梯度爆炸问题。
LSTM在RNN的基础上,加了门控制。也就是说,利用sigmoid函数来舍弃掉一些旧的信息,以及tanh激活函数来保留新的信息,这样有效避免梯度爆炸问题。
2.2生成对抗网络
GAN的组成:生成器G和判别器D:
其中,z为噪声,y为真实。
最终的生成器G*:
但是经典的GAN的生成过程不可控,所以需要cGAN,c为conditional:其中,x为约束条件。
之后,pix2pix模型是在生成模型中添加图像为约束条件,比如说轮廓图。
生成器通过轮廓图来生成对应的图像,而这里的判别器需要判别图像对的真假(生成图像+轮廓;真实图像+轮廓)
由此可见,只是在母版的基础上变换了模型。
科研速递 | 构造式隐写https://cs.fudan.edu.cn/f1/00/c24256a454912/page.htm
https://arxiv.org/pdf/2207.13867.pdf
Steganography-based facial re-enactment using generative adversarial networks | SpringerLink
Generative Steganographic Flow | IEEE Conference Publication | IEEE Xplore
https://arxiv.org/abs/2305.03472 Generative Steganography Diffusion
算法番外篇(信息隐藏)——SteganoGan_东方旅行者的博客-CSDN博客
Coverless Image Steganography: A Survey | IEEE Journals & Magazine | IEEE Xplore
解耦表征
解耦就是从数据中分离出一些具有语义的向量,是不是说语义本身就是解耦的?但是不是独立的。
语义:颜色,形状,轮廓,细节,大小。。。仅对深色物体进行加密,