【目标检测-YOLO】YOLO v5 训练自定义数据集

本文档详细介绍了使用YOLOv5训练自定义数据集的步骤,包括图像标注、数据组织、yaml文件修改、训练过程以及解决训练中遇到的问题,如数据标注错误和内存错误。此外,还提供了恢复训练、使用tensorboard和推理的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考:https://github.com/ultralytics/yolov5

数据集格式: voc

1. 标注所需图像

比如使用 labelimg

2. 数据组织成 VOC的格式

3. 分割数据集

# coding:utf-8

import os
import random
import argparse

parser = argparse.ArgumentParser()
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='./VOCdevkit/logo2021/JPEGImages', type=str, help='input xml label path')
#数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='./VOCdevkit/logo2021/ImageSets/Main', type=str, help='output txt lab
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理心炼丹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值