BundleFusion 解析

本文详细解析了BundleFusion的实时三维重建方法,包括全局姿态对齐、对应过滤、分层优化策略等。通过帧匹配、局部和全局优化,实现高效、稳健的3D模型构建。尽管存在局限性,如特征坐标固定不变可能导致误差,但该技术在cuda加速下实现了高效运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

BundleFusion 解析

原创 2016年10月25日 15:32:32

Updated at December 7, 12.

Method overview

BundleFusion 和之前所有的帧匹配(keyframe,每个 chunk 的第一帧),匹配采用 sift 描述子,这种方式和 SLAM 中一般通过邻近的帧计算 pose 不一样。
为了减少优化时优化的变量个数,采用 local-to-global 的位子优化策略。local 范围内,将全部帧按照划分成等大小的 chunk,先在 chunk 内做 pose 优化。然后在 global 范围内,所有的 chunk 的 pose 放在一起优化。这种 local-to-global 的方式,可以减少优化的变量个数,加速优化过程。
在建图部分,采用 voxel hashing 算法,不同的是,BundleFusion 中每个 chunk 的 pose 一直在做改变,pose 的改变需要映射到全局的 TSDF 模型中。方法是,挑选出 pose 改变量最大的 chunks(10 个),按照将帧融合到 TSDF 时的 pose,做 de-integration,将之前融合进 TSDF 模型中的数据,从 TSDF 模型中减掉。然后,按照优化之后的 pose,将 chunk 的数据 re-integrate 到 TSDF 模型中。

算法流程图:

Global Pose Alignment

对于新获取的帧,和之前的帧累计到一个 chunk 时(每 11 帧组成一个 chunk),先在 chunk 内匹配,做 local 优化,优化后,用 chunk 内的第一帧表示 chunk,chunk 内的所有帧的特征组合在一起,表示该 chunk 内特征,然后新的 chunk 和之前所有的 chunk 匹配,做 pose 优化,SIFT 特征提取和匹配都在 GPU 上做,计算一帧 SIFT 关键点和提取关键点描述子占用 4-5ms,匹配一次耗时大概 0.05 ms,特征匹配不可避免会有错误的匹配,作者设计了严格的筛选机制。

Correspondence Filter

Key point correspondence filter

对于帧 f i  f j  f i   中 3D 点集 P</

实时全局一致的3D重建,使用动态表面重新整合技术实时,高品质,大尺寸场景的3D扫描是混合现实和机器人应用的关键。然而,可扩展性带来了姿态估计漂移的挑战,在累积模型中引入了显着的错误。方法通常需要几个小时的离线处理来全局纠正模型错误。最近的在线方法证明了令人信服的结果,但遭受以下缺点:(1)需要几分钟的时间才能执行在线修正,影响了真正的实时使用; (2)脆弱的帧到帧(或帧到模型)姿态估计导致许多跟踪失败;或(3)仅支持非结构化的基于点的表示,这限制了扫描质量和适用性。我们通过一个新颖的,实时的端对端重建框架来系统地解决这些问题。其核心是强大的姿态估计策略,通过考虑具有高效分层方法的RGB-D输入的完整历史,针对全局摄像机姿态优化每帧。我们消除了对时间跟踪的严重依赖,并且不断地将其定位到全局优化的帧。我们提出了一个可并行化的优化框架,它采用基于稀疏特征和密集几何和光度匹配的对应关系。我们的方法估计全局最优化(即,束调整的姿势)实时,支持从总跟踪故障(即重新定位)恢复的鲁棒跟踪,并实时重新估计3D模型以确保全局一致性;都在一个框架内。我们优于最先进的在线系统,质量与离线方法相同,但速度和扫描速度前所未有。我们的框架导致尽可能简单的扫描,使用方便和高质量的结果。
### DBA-Fusion 的概念及其应用 DBA-Fusion 是一种基于 Bundle Adjustment (BA) 和视觉惯性里程计 (VIO) 融合的技术,通常用于多传感器融合场景下的状态估计和优化问题。它通过结合相机的视觉信息与惯性测量单元 (IMU) 数据来提高系统的鲁棒性和精度。 #### 1. **DBA-Fusion 的核心原理** DBA-Fusion 利用了 Ceres Solver 来实现 BA 问题的求解过程[^1]。Ceres 提供了一种高效的非线性最小二乘法框架,能够处理复杂的优化问题。在 DBA-Fusion 中,主要涉及以下几个方面: - **变量定义**: 需要优化的状态量包括位姿、速度、加速度偏差以及陀螺仪偏差等。 - **残差项构建**: 定义重投影误差作为目标函数的核心部分,这些误差反映了观测数据与预测模型之间的差异[^2]。 - **雅可比矩阵计算**: 对于难以解析求导的情况,可以通过数值方法引入微小扰动来进行近似;而对于可以直接求导的部分,则利用链式法则完成推导[^3]。 #### 2. **具体应用场景** ##### (1)**机器人导航** 在移动机器人领域,DBA-Fusion 可以显著提升定位精度。例如,在无人机自主飞行过程中,仅依靠 GPS 易受遮挡影响而失效,此时借助摄像头捕捉环境特征并与 IMU 加速计读数相结合,能有效弥补单一传感器局限性[^4]。 ##### (2)**增强现实(AR)/虚拟现实(VR)** 为了提供沉浸式的用户体验,设备需要精确追踪用户的头部运动轨迹或者手部动作姿态变化情况。DBA-Fusion 方法同样适用于此类需求较高的实时交互场合下,确保渲染画面同步更新无延迟现象发生。 ##### (3)**自动驾驶汽车感知模块开发** 现代高级驾驶辅助系统(ADAS)依赖多种类型的传感装置协同工作才能达到预期效果。其中就包含了利用双目或多目摄像机配合激光雷达获取周围物体距离信息的同时也要考虑车辆自身的动态特性调整参数设定值范围从而获得更加稳定可靠的检测结果。 ```python import numpy as np from scipy.optimize import least_squares def residual_function(params, measurements): # params: 待优化参数向量 # measurements: 实际测量值列表 predicted_values = compute_predictions(params) # 计算理论预测值 residuals = [] for i in range(len(measurements)): error = measurements[i] - predicted_values[i] residuals.append(error) return np.array(residuals) initial_guess = [...] # 初始化猜测值 result = least_squares(residual_function, initial_guess, args=(measurements,)) optimized_params = result.x ``` 上述代码片段展示了如何使用 Python 构建简单的非线性最小二乘拟合程序,这类似于 DBA-Fusion 执行内部操作的方式之一——即反复迭代直至找到最优解决方案为止。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值