【OpenVINS】(一)ZUPT

本文介绍了在自动驾驶场景中如何利用惯性传感器(IMU)和视差检测来判断车辆是否静止。通过构建零速度更新(ZUPT)误差方程,结合加速度和角速度的先验知识,可以检测车辆是否停止,并通过卡方分布判断静止状态的置信度。此外,还提到了基于图像视差的检测方法作为补充,但该方法在动态环境中可能失效。文章讨论了状态更新和噪声处理,并强调了在实际应用中IMU噪声估计的重要性。
摘要由CSDN通过智能技术生成

参考:Measurement Update Derivations » Zero Velocity Update


在典型的自主汽车场景中,传感器系统将在停止灯处变得静止,其中动态物体(例如交叉路口的其他车辆)可能会快速损坏系统,通过零速检测识别当前车辆处于静止状态,以暂停特征跟踪,来避免定位系统崩溃


1. Inertial-based Detection

1.1 误差构造

当车辆静止(对于车辆匀速直线运动这种case可以通过速度幅值检测剔除),加速度和角速度先验值都是0,先验也是一种观测,所以构造如下观测方程:
z ~ = [ a − ( a m − b a − G I k R G g − n a ) ω − ( ω m − b g − n g ) ] = [ − ( a m − b a − G I k R G g − n a ) − ( ω m − b g − n g ) ] \tilde{\mathbf{z}}=\left[\begin{array}{c} \mathbf{a}-\left(\mathbf{a}_{m}-\mathbf{b}_{a}-{ }_{G}^{I_{k}} \mathbf{R}^{G} \mathbf{g}-\mathbf{n}_{a}\right) \\ \boldsymbol{\omega}-\left(\boldsymbol{\omega}_{m}-\mathbf{b}_{g}-\mathbf{n}_{g}\right) \end{array}\right]=\left[\begin{array}{c} -\left(\mathbf{a}_{m}-\mathbf{b}_{a}-{ }_{G}^{I_{k}} \mathbf{R}^{G} \mathbf{g}-\mathbf{n}_{a}\right) \\ -\left(\boldsymbol{\omega}_{m}-\mathbf{b}_{g}-\mathbf{n}_{g}\right) \end{array}\right] z~=[a(ambaGIkRGgna)ω(ωmbgng)]=[(ambaGIkRGgna)(ωmbgng)]

openvins代码也利用速度为0的先验,构造误差方程,
0 = v k + 1 = v k − g ∗ d t + R T ∗ ( a m − b a − n a ) ∗ d t 0 = v_{k+1} = v_k - g*dt + R^T*(a_m - b_a - n_a)*dt 0=vk+1=vkgdt+RT(ambana)dt

此误差与上面的 z ~ \tilde{\mathbf{z}} z~ 中以加速度为 0 0 0 的先验构造的误差项可认为是等价的,只需要使用一个即可

1.2 计算雅可比

a = a m − b a − G I k R G g − n a ω = ω m − b g − n g \begin{aligned} \mathbf{a} &=\mathbf{a}_{m}-\mathbf{b}_{a}-{ }_{G}^{I_{k}} \mathbf{R}^{G} \mathbf{g}-\mathbf{n}_{a} \\ \boldsymbol{\omega} &=\boldsymbol{\omega}_{m}-\mathbf{b}_{g}-\mathbf{n}_{g} \end{aligned} aω=ambaGIkRGgna=ωmbgng

对上式一阶泰勒展开,即可得到雅可比
∂ z ~ ∂ G I k R = − ⌊ G I k R G g × ⌋ ∂ z ~ ∂ b a = ∂ z ~ ∂ b g = − I 3 × 3 \begin{aligned} \frac{\partial \tilde{\mathbf{z}}}{\partial_{G}^{I_{k}} \mathbf{R}} &=-\left\lfloor ^{I_{k}}_{G} \mathbf{R}^{G} \mathbf{g} \times \right\rfloor\\ \frac{\partial \tilde{\mathbf{z}}}{\partial \mathbf{b}_{a}} &=\frac{\partial \tilde{\mathbf{z}}}{\partial \mathbf{b}_{g}}=-\mathbf{I}_{3 \times 3} \end{aligned} GIkRz~baz~=GIkRGg×=bgz~=I3×3

注意,这里使用的JPL四元数,所以关于 G I k R _{G}^{I_{k}} \mathbf{R} GIkR的雅可比前面会多一个负号

1.3 卡方分布来确定当前车辆是否处于静止状态

z ~ ⊤ ( H P H ⊤ + α R ) − 1 z ~ < χ 2 \tilde{\mathbf{z}}^{\top}\left(\mathbf{H P H}^{\top}+\alpha \mathbf{R}\right)^{-1} \tilde{\mathbf{z}}<\chi^{2} z~(HPH+αR)1z~<χ2

  • P \mathbf{P} P表示状态 G I k R G , b g , b a ^{I_{k}}_{G} \mathbf{R}^{G}, \mathbf{b}_g, \mathbf{b}_a GIkRG,bg,ba的协方差,观测方程会使用两帧图像中间所有的imu测量值构造(每个测量值构造一组观测方程),方程中关于状态的协方差并非都是常量,
    • P \mathbf{P} P中关于 G I k R G ^{I_{k}}_{G} \mathbf{R}^{G} GIkRG的协方差是常量,就是 k k k时刻姿态的协方差
    • b g , b a \mathbf{b}_g, \mathbf{b}_a bg,ba的协方差则需要从 k k k时刻积分到当前imu测量值时刻 t t t,这段时间记为 Δ t \Delta t Δt,则 Σ t b g , b a = Σ c o n t i n u o u s b g , b a Δ t \Sigma_t^{\mathbf{b}_g, \mathbf{b}_a} = \Sigma_{continuous}^{\mathbf{b}_g, \mathbf{b}_a} \Delta t Σtbg,ba=Σcontinuousbg,baΔt也就是说ZUPT中不只是有观测方程,还隐含了一个这样的state propagation的过程
    • openvins为了简便做了近似,使用两帧图像间的时间差 Δ t k , k + 1 \Delta t_{k,k+1} Δtk,k+1替代 Δ t \Delta t Δt
  • 实际使用中,IMU的噪声 R \mathbf{R} R需要放大50-100倍,因为我们有可能低估了我们的IMU的噪声,以及IMU挂在的车体本身存在振动
1.4 状态更新
  • 对状态 b g , b a \mathbf{b}_g, \mathbf{b}_a bg,ba进行state propagation,即更新状态协方差
  • 执行正常的KF更新步骤

2. Disparity-based Detection

1 N ∑ i = 0 N ∥ u v k , i − u v k − 1 , i ∥ < Δ d \frac{1}{N} \sum_{i=0}^{N}\left\|\mathbf{u v}_{k, i}-\mathbf{u v}_{k-1, i}\right\|<\Delta d N1i=0Nuvk,iuvk1,i<Δd

注意,这种方式在动态环境中将会失效,所以需要配合第一种方式一起使用


@leatherwang
二零二一年十月三日

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值