GMapping与AMCL中的粒子滤波对比

GMapping和AMCL都是基于粒子滤波实现的,前者是一个SLAM过程,后者是一个Pure Localization过程,导致二者在具体实现有很大不同。


1. 粒子属性
  • AMCL粒子仅包含pose+weight,因此需要较多的粒子,才能比较好的表示机器人位姿的估计(比如,max_samples: 1000, min_samples: 100)
  • GMapping粒子包含轨迹+地图+weight,粒子数不能太多,否则占用内存过多

2. 粒子初始化
  • GMapping的粒子的pose在刚初始时刻都是相同的
    GMapping中的粒子变得不同是通过运动模型上加的高斯噪声实现,gmaping是一个slam过程,不仅要定位还需要建图,所以将所有粒子的初始pose设置成同一个值,比如Identity
  • 而AMCL中粒子初始化时,对给定pose加了高斯噪声
    AMCL的方法更符合初始撒粒子的逻辑

3. proposal分布
  • AMCL使用里程计运动模型作为提议(proposal)分布
    提议分布特点:又扁又宽
  • GMapping使用的是激光雷达观测模型作为提议(proposal)分布
    提议分布特点:proposal分布用scan match来表示,提议分布变成了一个比较小的尖峰区域

4. 粒子数
  • GMapping的粒子数是固定的
  • AMCL的粒子数根据KLD采样动态改变,初期粒子数逐渐增大到最大值,收敛之后,粒子数逐渐减少到最小值

5. 权重计算
  • AMCL是通过似然域模型,计算给定pose的scan在似然域中的得分
  • GMapping是通过scan to match计算

6. 输出
  • AMCL输出的pose是所有粒子加权平均后的结果
  • GMapping输出的是得分最高的粒子

@leatherwang
二零二一年三月二十五日

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值