回答网友提问:Word 里如何调用 DeepSeek API?

笔者运营的知识星球里有朋友提问,大意是公司不能访问外网,想在 Microsoft Word 里访问公司本地部署的 DeepSeek API,问具体应该如何操作?

笔者蛇年春节时曾经尝试过自己部署 DeepSeek. 笔者使用的笔记本配置:Intel® Core™ i7 2.4G + 64G 内存 + 2TB SSD

所以没打算在本地部署哪怕是参数最小的 DeepSeek 版本,而是死皮赖脸的找腾讯云社区的运营小姐姐,要了 100 元代金券,然后在腾讯 HAI 上创建了一台 Windows Server 实例,在上面部署了 DeepSeek:

在腾讯 HAI 上使用 DeepSeek + RAG 实现 SAP 私人知识库
使用腾讯 HAI 5 分钟内部署一个私人定制的 DeepSeek

<think>嗯,用户想了解如何通过DeepSeek API构建一个基于本地知识库的问答系统。首先,我需要明确用户的需求。他们可能希望有一个能够回答特定领域问题的系统,比如公司内部文档或者某个专业领域的资料。这可能涉及到自然语言处理和检索增强生成(RAG)的技术。 接下来,我得分解构建这样一个系统的步骤。首先需要处理本地知识库,可能包括多种格式的文件,比如PDF、Word、TXT等。然后是如何将这些文档转换成文本,并进行分块和向量化,以便后续的检索。这部分可能需要用到文本嵌入模型,比如DeepSeek提供的Embedding API。 然后,用户需要使用DeepSeek的Chat API来生成回答。不过,在生成回答之前,系统需要先检索相关的知识库内容。这可能需要一个向量数据库来存储和快速检索相似的文本块。常见的向量数据库有FAISS、Chroma或者Milvus,用户可能需要根据数据量的大小选择合适的工具。 接下来是流程设计的问题。用户上传文档后,系统需要处理这些文档,存储到向量数据库。当用户提问时,系统会先检索相关的文档片段,然后将这些片段和问题一起发送给DeepSeekAPI生成回答。需要考虑的是如何有效整合检索到的信息和生成回答的提示词工程,确保生成的答案准确且相关。 可能还需要考虑一些优化点,比如分块的大小、重叠部分如何处理,以及如何过滤掉不相关的检索结果。另外,错误处理也是关键,比如API调用失败时的重试机制,或者处理超出token限制的情况。 用户可能对具体的代码实现感兴趣,所以需要给出一个简单的示例,展示如何处理文档、构建向量数据库和查询。同时,要提醒用户注意安全性和权限,确保敏感数据不会通过API泄露。 此外,需要确认DeepSeek API的具体功能和限制,比如Embedding模型的支持情况,Chat模型的最大token数,以及是否支持流式响应等。如果用户的知识库特别大,可能需要考虑分布式存储和检索的效率问题。 最后,总结关键步骤,并给出进一步优化的建议,比如缓存结果、用户反馈机制等,帮助用户构建一个高效可靠的系统。构建</think>基于本地知识库的问答系统(通常称为RAG, Retrieval-Augmented Generation)结合DeepSeek API的核心流程如下,分为5个关键步骤: --- ### 一、系统架构设计 ``` 用户提问 → 本地知识库检索 → 关联片段提取 → DeepSeek生成 → 返回答案 (向量数据库) (Prompt工程) ``` --- ### 二、具体实现步骤 #### 1. 知识库预处理 - **文档解析**:使用`PyPDF2`/`docx`/`Unstructured`库处理PDF/Word/TXT等格式 - **文本分块**:按512-1024 tokens分段(需保留上下文连续性) - **向量化**:调用DeepSeek Embedding API生成向量(示例:`text-embedding-1`模型) ```python from deepseek_api import get_embeddings vectors = get_embeddings(text_chunks) ``` #### 2. 向量数据库构建 - 轻量级方案:使用FAISS(Facebook开源的向量检索库) - 生产级方案:Milvus/Pinecone(支持分布式部署) ```python import faiss index = faiss.IndexFlatL2(vector_dim) index.add(vectors) ``` #### 3. 检索增强实现 ```python def retrieve_context(question, top_k=3): query_vec = get_embeddings([question])[0] distances, indices = index.search(query_vec, top_k) return [text_chunks[i] for i in indices[0]] ``` #### 4. 生成模块集成 ```python prompt_template = """ 基于以下上下文: {context} 请回答这个问题:{question} 若信息不足请明确说明 """ def generate_answer(question): context = retrieve_context(question) prompt = prompt_template.format(context=context, question=question) return deepseek_chat_api(prompt) ``` --- ### 三、关键优化点 1. **分块策略**:采用滑动窗口(如256 tokens重叠)保持上下文连贯 2. **重排序机制**:对检索结果进行相关性二次评分 3. **缓存层**:对高频问题缓存API响应结果 4. **限流控制**:通过队列机制管理API调用频率 --- ### 四、安全注意事项 - 敏感数据脱敏处理(如自动过滤身份证号、手机号) - 设置API调用速率限制(参考DeepSeek官方配额) - 添加用户鉴权层(JWT/OAuth2) --- ### 五、示例代码片段 ```python # 完整工作流示例 question = "如何申请年假?" contexts = retrieve_context(question) response = generate_answer_with_deepseek(question, contexts) # 输出结构化结果 print({ "answer": response.choices[0].message.content, "sources": [doc.metadata["source"] for doc in contexts] # 显示来源文档 }) ``` 建议从简单原型开始迭代,逐步加入缓存、日志监控等生产级功能。DeepSeek的性价比优势可有效降低大知识库场景下的成本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汪子熙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值