探讨:是否可以不见用户,利用AI做用户洞察/需求分析(附上可用的GPTs)

这个探讨的缘起呢,是很多企业内部的产品经理,因为各种原因,无法接触用户。

首先,做产品不接触用户当然不对,但这就是现状,所以探索一下有没有可能借力AI把这个事情的危害减少,哪怕一点点。

为什么可以试试?

ef373b324f8935aa5dafff7ade009f97.jpeg

第一,因为AI相比任何人,有着更广泛的数据/知识基础,所以有理由相信,对于任意目标用户群体,AI都具备一定的理解。在任何领域,AI就算比不上专家,也会比外行要了解一些。当我们作为产品经理,在做一些“自己不是用户”的产品时,AI很可能比我们更了解行业、用户,等等了。

第二,该说不说,有些产品经理做用户洞察的能力,也就聊胜于无吧——样本的选择可能偏差、问卷设计可能不合理、当面深访也不会深挖、用户说的也真假难辨……而且就这样了,还几乎不和用户互动,甚至不认为这件事有价值。靠“拍脑袋”做产品,在很多团队真的是常态。

当然,AI的输出会有幻觉(hallucination),我们可以通过prompt加上身份设定、思维链(chain of thought)、以及让AI分裂成不同角色自我审查来部分避免。

以及,在产品正式进入研发之前,还是要找真实用户做一轮验证,主要是验证低成本原型,我想,用户洞察/需求分析用AI模拟,解决方案找真人验证——这已经是最底线了。

如果你还是说接触不到用户,那真要好好想想,为什么真的产品做出来以后,你就突然能接触到用户了?

直接找几个实际的场景,试试吧。当然,以下几个尝试都还很浅,如果有探索得更深的朋友,请多指教。


1. 理解行业领域:产品有可能面对哪些角色,角色彼此之间的关系如何。用100个关键词理解领域。

31588f8dedc2d133102fe22b898479c4.png

4d8be7db1bf0adadc33a1c0e90b1cfe8.png

2. 假想用户旅程:用户在没有产品之前,做某件事的过程如何,每一步可能碰到哪些痛点,心情如何。

85b0d78938bf23c55589d541d5c91d57.png

7e1b1a650d4cb990bef3289111ebe439.png

3. 准备互动素材:只要把背景讲清楚,出个问卷(可供修改的初稿,或者让AI帮忙优化问卷),写访谈提纲都问题不大,就不举例了……但没法见用户,有没有可能让AI模拟用户,来做访谈?可信么?

d4fe6dcf3a3b9361d81adbbc6f3fdc31.png

82e365ae474703e6f330931ae8f4d86f.png

4511b6e6a0c5b1f7afe1cd3f4215e890.png

4. 头脑风暴助手:让它不断罗列,直到开始胡说八道或者重复,再让它综合提炼一下,给出前N个。

f55120c7c47a08d875296ac9501c2701.png

92c7ad34700ad43eda4ca6d39f83fa78.png

5. 提供原型思路:根据特定的关键假设,设计一些免开发的原型,来验证解决方案是否靠谱。

c944f79ba350fd02ea9dc68fa371009d.png

ffec179541fc0265cd8b83e0ff9cf49b.png

e7dea8f5f808a1efde715655c2db7e58.png

综上,简单说,就是把产品探索过程(下图中的绿色Discovery小闭环)都通过和AI互动来解决,只在正式启动研发之前的原型测试阶段和真实用户互动一次,从而在保证产品方向相对靠谱的前提下,以极快的速度做产品探索闭环。

3105ac071dc41c34172c67408ef32a3e.jpeg

这也算是在践行乔布斯的用户洞察方法吧——用户不知道自己需要什么,直到你把产品拿到Ta面前,Ta才会跟你说,这不是我想要的。


有些企业已经在尝试把这些想法产品化了,如下,如果有这方面走得更远的朋友,欢迎指教、交流。

d3f0a6801e4b03e1620867837b2639b7.png

574f93a8943439951907a74aa4cdab03.png


以上,我梳理了一下流程,先做了个GPTs,见下。

欢迎试玩,多提意见和建议,还需要不断迭代。我的todolist里面,已经有诸如继续喂方法论、案例;找用户、产品经理对比测试结果,等等。

571de78ad051698ce2554b46c020f0dd.png

https://chat.openai.com/g/g-NT3mP6XcU-user-insight-mentor

以及一个我自己的使用示例——关于如何做一个AI辅助盲人出行的产品,从领域理解到原型验证。

https://chat.openai.com/share/d49d05cc-782e-4134-b8b8-9be16582c7ee

1c3a2396b63a51cc8f0357027c71642b.png

_________

苏杰(iamsujie),产品创新顾问,《人人都是产品经理》系列4本书的作者,前阿里8年产品经理,集团产品大学负责人,良仓孵化器创始合伙人。如需产品经理/产品思维/产品创新相关领域的培训咨询服务,欢迎联系这个微信(13758212411)。

  • 15
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
【资源说明】 实训项目基于电商售后评论数据的用户情感分析python源码+项目部署说明.zip 实训项目基于电商售后评论数据的用户情感分析python源码+项目部署说明.zip 实训项目基于电商售后评论数据的用户情感分析python源码+项目部署说明.zip 1、该资源内项目代码都是经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能。 运行: `streamlit run ./Comment_analysis/Streamlit/streamlitEXP.py` 分工:<br> 必须考虑的点: 挑选合适的商品(好差评都多,并且评论多) GitHub class 参数(类型啥的,命名方式) 统一规范(代码格式,数据库,完善注释,log) 结合到谁的电脑上谁演示,何种形式ppt/代码 文件夹框架 数据测试集训练集划分 不同的产品(不同特点的卖点,特有的关键词),不同品牌的产品(用来比较售后服务优劣等卖点) 评论分数和评论内容的不吻合问题 评论的具体关键词(外形外观等) 开发文档开发文档: 需求文档 明确产品功能 分析某一功能点的流程 整合各个功能点--明确分工 接口文档 变更文件 流程图(可以单独作为一份文件可以作为附件附在文档中) 情感分数(情感倾向分析,结合score) 装饰器(计时、log)@注解 可视化结果,图形化界面(见4) config decorator 可以考虑的点: 同一个热水器的评论内容随时间变化 算法优化与提升(比如用不同的包,还可以用多种方法来处理,进行比较分析) 判断优劣coherence/主观判断/通过数据可视化来大致判断,参数优化(主题数/) 找到一个网站据说可以 wordcloud可视化词云 bert情感分类 扩展提升的点: texthero可视化 pyLDAvis可视化,通过网页来展示 streamlit+heroku 不用snownlp 机器学习/深度学习 eda 注释掉的代码最后删掉,或者说写明什么时候开启调用

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值