2024再见,长文章和电影,就是上一代的京剧

如题,下一代人看待长文章和电影,也许就像我们这一代人看待京剧。

承认它有存在的价值,但也真的看不下去。

由此,延伸聊聊各种广义内容的变化,我们能看到一些规律和方向。

注:先说下一这里的“内容”指的是啥,从抽象到具体,我将它分为了三层。要素层的文字(符号化的视觉信息)、声音、静态图像、动态图像……;表现层的长短文章、说话/唱歌、图片、演出……;载体层的书籍、唱片/播客、展览、话剧/电影/长短在线视频……

709d27415df39a85ae154fe0b3bf3c5b.jpeg

内容生产

门槛越来越低,有能力的生产者越来越多,“产能/效率”也越来越高,最极致到AIGC,可以实时针对每个人生成独一份的、即抛型内容。

内容传播

或者说过滤器的变化,从点对点式、到大范围广播、到垂直广播,到消费端有一定主动性的订阅、搜索,再到消费端似乎又让渡部分主体性的推荐、生成。

因为内容量急速增多,所以不管过滤器怎么进化,每个具体内容,平均能被消费的量一定是越来越少了。

内容消费

门槛也是越来越低,越来越多的人消费得起内容,从单向接收到可以互动;另一方面,内容消费时,认知带宽的占用越来越大,大到一部分消费者(主动)放弃思考,或者(被动)无法思考。

注:认知带宽指的是消费内容时,能调用的认知资源总量,举例子,“文字”肯定远小于“带字幕的、有声音的视频”的认知带宽占用。在消费者消费内容的过程中,有三种认知行为——输入、处理和输出,如果信息输入占据的带宽过大,则留给处理和输出(比如思考整理信息,内化,互动)的带宽就小了很多。

内容形态

越来越接近“现实”,因为技术原因,最早的传播只能是面对面——真实现实,传播效率非常低。有了文字,就可以克服面对面的时空限制,先然后是图像、音视频,再到“虚拟现实”的元宇宙。

形态的自然发展,也印证了信息输入对“认知带宽”的占用上升。这里还有一个相关的点,我们在与一个具体的人面对面交流、或者看书的时候,都是很容易“打断”对方的输入,去互动,去整理信息的,但是,当你在看“直播”的时候,就几乎是一个完全被动接受输入的状态了,这也进一步侵占了消费者的主体性。

注:内容形态越来越符合自然,我们还可以通过人与计算机的交互方式演化来类比理解——命令行、(键鼠)图形界面、触摸图形界面、自然语言界面。

内容长短

广受青睐的内容越来越短,或者说,时间颗粒度被切得越来越细。这是消费者和生产者的“共谋”,符合天然人性,但也让渡了很多人之所以为人的人性。对比长内容与短内容,收益会部分地从内容生产者转移到内容平台/过滤器方。

上一代的内容,如题说到的京剧、乃至长文字、电影,比例会减少,但不会消亡,会变成垂直市场、小众玩乐、“奢侈品”、直到成为“非遗”。

内容权力

选择/决定看什么内容,是一种权利,这里我造了一个词。内容权力的转移,似乎从开始生产者,到部分转移到消费者,再渐渐交给了内容平台及其背后的智能算法,并且在不同的细分场景里动态演化。

以上,想说的基本上说完了,下面是一点个人喜好的表达。

内容演化造成的消费者主体性让渡,是我非常不喜欢的,我自己不喜欢被控制,也不喜欢去侵占别人的主体性,所以,坚持写一些无情绪挑动的、没啥时效性的长文章,是一种小小的坚持,也是一种筛选互动对象的方式,和你这样的朋友交流,让我感到安心和美好。

专门祝,看到这句话的你,新年快乐。

扩展阅读:

别想着看直播学“干货”,我是真的不喜欢说

“当我们看屏幕时,屏幕和脑子只能有一个在动——你看文字的时候,屏幕不动,脑子自然就活跃了,而视频形态,屏幕在动,脑子基本就躺下来,只能被动接受信息。”

对于生下来只通过短视频学习的小孩来说,他还需要识字么?

“阅读的过程,需要先调用视觉信道识别文字,然后调用听觉信道转化成读音(没错,你的大脑看到文字以后其实是在默读),再根据读音对应到某个意义,抽象理解整句话的意思。而写字的过程也是类似。抽象、想象能力对人类的意义想必不需多言,而目前看,文字是最好用的载体。”

_________

苏杰(iamsujie),产品创新顾问,《人人都是产品经理》丛书作者,良仓孵化器创始合伙人,阿里8年产品经理,集团产品大学负责人。如需产品经理/产品思维/产品创新相关领域的培训咨询服务,欢迎联系这个微信(13758212411)。

AI实战-出租车价格数据集分析预测实例(含20个源代码+65.69 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:20个代码,共124.23 KB;数据大小:1个文件共65.69 KB。 使用到的模块: pandas seaborn xgboost matplotlib.pyplot sklearn.preprocessing.RobustScaler sklearn.metrics.mean_absolute_error sklearn.model_selection.GridSearchCV sklearn.model_selection.train_test_split numpy warnings joblib sklearn.set_config sklearn.impute.SimpleImputer sklearn.preprocessing.LabelEncoder sklearn.model_selection.cross_val_score sklearn.preprocessing.StandardScaler sklearn.metrics.r2_score sklearn.metrics.mean_squared_error sklearn.linear_model.LinearRegression sklearn.linear_model.Lasso sklearn.linear_model.Ridge sklearn.neighbors.KNeighborsRegressor sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor os sklearn.preprocessing.OneHotEncoder sklearn.compose.ColumnTransformer sklearn.pipeline.Pipeline sklearn.tree.DecisionTreeRegressor sklearn.svm.SVR sklearn.neural_network.MLPRegressor bokeh.io.output_notebook bokeh.io.show bokeh.plotting.figure bokeh.layouts.gridplot sklearn.preprocessing.PolynomialFeatures scipy.stats sklearn.metrics.mean_absolute_percentage_error sklearn.ensemble.ExtraTreesRegressor xgboost.XGBRegressor lightgbm.LGBMRegressor sklearn.impute.IterativeImputer statsmodels.stats.outliers_influence.variance_inflation_factor statsmodels.api sklearn.metrics.( plotly.express psynlig.plot_correlation_heatmap bokeh.plotting.show bokeh.plotting.output_notebook catboost.CatBoostRegressor sklearn.linear_model.ElasticNet missingno
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值