《U-Net: Convolutional Networks for BiomedicalImage Segmentation》笔记

Olaf Ronneberger, Philipp Fischer, and Thomas Brox, 2015

文章提出了的端到端训练的网络,以非常少的图像输入,在ISBI上的表现击败了别的方法,赢得了2015 ISBI细胞追踪挑战赛。

1. 引言

深度神经网络的成功受限于更大的数据集,更深的网络。

CNN的典型任务是分类,图像的输出是单一分类标签。然而在许多视觉任务,尤其是生物图像处理中,需要的输出应包括位置信息,即,每个像素需要得到一个分类标签。而且,对于生物任务而言,数千张的训练图像是难以获得的。Ciresan等在网络中设置了滑动窗口,将每个像素周围的区域(块)作为输入。首先,网络可以本地化,其次,块作为输入的训练数据远大于训练图像作为输入的训练数据。该网络在ISBI 2012 EM分类挑战中以极大优势夺冠。

显然,Ciresan等的方法有两点不足。一、速度慢,因为每一块区域都要跑一遍网络,块之间的重叠部分会造成大量冗余。二、在区域精度和背景利用间需要取舍,较大的块需要更多最大池化层,降低了区域精度,小的块让网络只能看到较少的背景。

本文基于所谓”全卷积网络“的精巧结构[Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation (2014), arXiv:1411.4038 [cs.CV]],调整并扩展了该网络,可以通过非常少的训练图像,获得更多准确的分割,如下图。

Long等人的主要思想是将连续的层加入一个普通深度网络,用升采样操作代替池化。这些层增加了输出的分辨率。为了区域化,从网络中输出的高分辨率特征将与升采样的输出结合。一个连续的卷积层将基于此,进而学会如何组装出更加准确的输出。

本文结构的一大重要改进是在升采样部分同样应用了很多特征通道,使得网络可以将背景信息传递至更高分辨率层。结果是,扩展路径和压缩路径多少是对称的,显示出U型结构。网络无任何全连接层,并只使用每次卷积的验证部分,使得输入图像中的所有背景都可利用。这一策略可通过重叠分块的方法,用于任意较大图像的无缝分割,见下图。

 为预测边缘区域的像素,失去的背景信息可以通过输入图像镜像推测得出。这一分块策略对于将该大网络应用于大尺寸图象很重要,否则分辨率受限于GPU显存。

对于本文任务,训练数据很少,作者通过对可用的输入图像应用弹性变化,实现了数据增强。

对于许多细胞分割任务而言,另一挑战是分割相接的同类物体,如下图。为解决这一问题,使用了权重损失,即赋予接触细胞间的背景标签在损失函数中更大的权重。

 最终得到的网络可应用于多种生物分割问题。本文展示了其在ISBI竞赛中的优异表现。

2 网络架构

网络架构如Figure. 1。由一个压缩和展开路径组成。压缩路径是典型的CNN网络,由一系列3×3卷积、ReLU、2×2(步长2)最大池化操作用于降采样。每次降采样加倍了特征通道数量。展开路径的每一步由升采样和2×2卷积(“升卷积”),特征通道数量减半,与压缩路径对应裁剪的特征图拼接,2个3×3卷积,气候的ReLU组成。每次卷积会损失边缘像素,故裁剪是必要的。最后一层,1×1的卷积用于共64个特征向量,得出分类。网络共包含23个卷积层。

为得到无缝的输出分割图,选择输入块尺寸很重要,使2×2最大池化操作在x和y方向相同。

3 训练

输入图像和对应的分割图,使用Caffe的SGD进行训练。

分类使用了softmax函数,损失函数为交叉熵。

3.1 数据增强

4 实验

U-Net在EM分割挑战中的表现。

2015 ISBI细胞追踪挑战赛的分割结果(交并比)

 5 结论

U-Net架构在许多不同生物分割应用表现优异。弹性变形的数据增强使训练很少有标签图像成为可能。使用一块Nvidia Titan GPU(6GB)的训练时间仅10小时。文章提供了基于Caffe的训练网络。

U-net implementation, trained networks and supplementary material available at
http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net

作者相信U-Net易应用于更多任务。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值