2024-中药网络药理学-教程(全网最牛逼)

这篇教程详述了中药网络药理学的研究过程,包括从uniprot官网下载并整理数据,获取疾病中药交集,处理Symbol,生成交集基因,并最终利用R语言绘制Venn图。涉及的工具包括Python和R,以及数据处理技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

中药网络药理学-教程(全网最牛逼)

请您下载资源绑定,就可以看到了,具体的内容了

1. 首先uniprot官网下载数据

1.1. 数据下载

  • 地址:https://www.uniprot.org/

  • ![外链图片在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    ge-20240410212513022.png&pos_id=img-WfyqlIze-1713321792128)

  • 我这里研究的是胶质母细胞瘤(GBM),glioblastoma ,输入进去,然后就会得到对应的数据

  • 外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 这里需要注意,不能直接下载txt文件,我们这里需要下载tsv的文件,然后进行转换为txt文件
  • 外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

1.2. 数据整理

  • 外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
  • 外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

1.3. 新建文件夹[代码处理]

  • 新建文件夹,命名为:1uniprot,如图所示:

  • 外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • import pandas as pd
    
    # 读取.tsv文件
    df = pd.read_csv('uniprotkb_glioblastoma.tsv', sep='\t')
    
    # 将DataFrame写入.txt文件
    df.to_csv('ann.txt', sep='\t', index=False)
    
  • 我们将文件转换为.txt的格式

  • 外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2. 疾病中药交集

2.1. 找到中药的复方药剂

2.1.1. 首先去TCSMP官网
  • 地址:https://old.tcmsp-e.com/
  • 外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
  • 然后就需要去筛选OB,DL,OB需要>=30,DL>=0.18,如下图所示:
### 关于网络药理学中使用Python的相关资源 对于从事网络药理学的研究人员来说,掌握Python及其相关库可以极大地提高工作效率并实现复杂的数据处理与分析。以下是几个重要的方向和工具: #### 教程推荐 1. **NetworkX 库入门** NetworkX 是一个用于创建、操作和研究复杂网络结构的Python库。通过学习此库的基础知识,能够帮助理解药物靶点之间的相互作用关系[^3]。 2. **PyBioMed 工具包** PyBioMed 提供了一系列生物医学计算功能,其中包括分子描述符计算等功能模块,非常适合在网络药理学项目中应用。官方文档提供了详细的安装指南及实例说明[^4]。 #### 实际案例分享 - **构建中药活性成分预测模型** 利用机器学习算法结合化学信息学方法,在Python环境下实现了针对特定疾病的有效物质筛选流程。该案例展示了如何整合多种异源数据库,并采用随机森林等分类器完成终建模任务[^5]。 #### 开发环境搭建建议 为了更好地开展上述工作,强烈建议使用Jupyter Notebook作为主要编程界面。它不仅支持实时预览代码执行效果,还便于记录整个科研探索过程中的每一步骤,特别适合教学演示或团队协作场景下的交流沟通[^1]。 ```python import networkx as nx G = nx.Graph() edges = [('drugA', 'targetB'), ('drugC', 'targetD')] G.add_edges_from(edges) print(f"The number of nodes is {len(G.nodes)}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值