✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🌿 往期回顾可以关注主页,点击搜索
🔥 内容介绍
随着能源危机和环境问题的日益严峻,电动汽车(Electric Vehicle, EV)作为一种清洁、高效的交通工具,在全球范围内得到了广泛的推广和应用。然而,大规模电动汽车的接入电网,对电网的运行稳定性和经济性带来了新的挑战。电动汽车的充放电行为具有随机性和不确定性,若管理不当,将导致电网负荷峰谷差增大,局部电压波动加剧,甚至影响电网的稳定运行。因此,如何对电动汽车的充放电行为进行有效的优化调度,成为当前电力系统研究领域的重要课题。本文将围绕电动汽车有序与无序充放电的特性,深入探讨其优化调度策略,并分析不同调度策略的优缺点,旨在为构建安全、经济、高效的电动汽车接入电网方案提供参考。
一、电动汽车充放电的特性分析
电动汽车的充放电行为受到多种因素的影响,包括车辆的行驶里程、驾驶习惯、电池容量、充电设施的类型和位置、电价政策、用户偏好等。根据充放电行为的组织形式,可将其分为无序充放电和有序充放电两种模式。
1. 无序充放电:
无序充放电是指电动汽车用户根据自身需求,在任意时间、以任意功率进行充电,缺乏统一的调度和协调。这种模式的优点是简单便捷,用户自主性高,无需进行复杂的配置和控制。然而,无序充放电的弊端也非常明显:
-
加剧电网负荷峰谷差: 大量电动汽车集中在用电高峰时段充电,导致电网负荷峰值显著增加,而用电低谷时段负荷则相对较低,从而加剧电网负荷峰谷差,降低了电网的运行效率。
-
增加线路损耗: 电网负荷高峰时段,线路电流增大,导致线路损耗增加,降低了电能的利用率。
-
影响电网电压稳定性: 大规模电动汽车集中充电可能导致局部电网电压骤降,影响其他用电设备的正常运行,甚至威胁电网的稳定运行。
-
增加电网扩容成本: 为了应对大规模电动汽车带来的负荷增长,电网需要进行扩容改造,增加投资成本。
2. 有序充放电:
有序充放电是指通过一定的调度策略,引导电动汽车用户在特定时间、以特定功率进行充电,从而实现对电动汽车充放电行为的优化控制。有序充放电的优点包括:
-
平滑电网负荷曲线: 通过引导电动汽车在用电低谷时段充电,可以在一定程度上填补负荷低谷,降低负荷峰值,平滑电网负荷曲线,提高电网的运行效率。
-
降低线路损耗: 通过均衡电网负荷,可以降低线路电流,减少线路损耗,提高电能的利用率。
-
提高电网电压稳定性: 通过优化电动汽车的充电时间和功率,可以避免局部电网电压骤降,提高电网的电压稳定性。
-
降低电网扩容成本: 通过优化电动汽车的充放电行为,可以延缓电网的扩容需求,降低投资成本。
-
提供辅助服务: 具备双向充放电功能的电动汽车(Vehicle-to-Grid, V2G)可以向电网提供辅助服务,如调峰、调频、备用容量等,提高电网的运行可靠性。
然而,有序充放电也存在一些挑战:
-
用户接受度问题: 有序充放电需要用户牺牲一定的自主性,接受调度系统的控制,用户是否愿意配合是一个关键问题。
-
信息通信基础设施建设: 有序充放电需要完善的信息通信基础设施,实现电动汽车与电网之间的信息交互,增加了建设成本。
-
调度算法的复杂性: 有序充放电的调度算法需要考虑多种因素,如电网负荷、电动汽车的充电需求、电价政策、用户偏好等,算法的复杂性较高。
-
隐私保护问题: 有序充放电需要收集用户的充电信息,可能涉及用户的隐私,需要采取有效的隐私保护措施。
⛳️ 运行结果
🔗 参考文献
[1] 袁怡.电动汽车充放电负荷与调度策略研究[D].兰州理工大学,2015.DOI:10.7666/d.D711127.
[2] 王球.考虑机组组合和综合效益的电动汽车有序充放电的研究[D].华北电力大学,2016.DOI:10.7666/d.D01071459.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类