✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
自适应巡航控制(Adaptive Cruise Control, ACC)作为高级驾驶辅助系统(Advanced Driver Assistance Systems, ADAS)的核心技术之一,在提升驾驶舒适性、减轻驾驶员疲劳以及提高交通安全性方面扮演着越来越重要的角色。传统的ACC系统通常采用PID控制等线性控制策略,虽然实现简单,但在面对复杂多变的交通环境时,控制性能往往受到限制。尤其是在车辆动态特性非线性显著、外部扰动频繁以及对控制精度要求较高的情况下,传统ACC系统的表现往往难以令人满意。因此,采用更先进的控制策略,如模型预测控制(Model Predictive Control, MPC),来设计更鲁棒、更高效的ACC系统,成为近年来研究的热点。本文将深入探讨基于MPC的自适应巡航控制技术,分析其原理、优势、挑战以及未来发展趋势,旨在阐明MPC在提升ACC系统性能方面的巨大潜力。
一、自适应巡航控制的演进与需求
传统的巡航控制系统只能维持车辆在预设的速度下行驶,而自适应巡航控制系统则在此基础上增加了对前方车辆距离的感知和调节功能。ACC系统通过传感器(如雷达、摄像头)实时监测前方车辆的距离、相对速度等信息,并根据设定的安全距离和期望速度,自动调节车辆的油门和制动,以保持与前方车辆的安全距离,并尽可能维持设定的期望速度。
随着汽车电子技术和人工智能技术的快速发展,ACC系统也在不断演进。早期的ACC系统通常采用简单的逻辑控制策略,只能在较为简单的交通环境下工作。随着控制算法的不断优化,出现了基于PID控制、模糊控制等策略的ACC系统,这些系统在一定程度上提高了控制性能,但仍然存在一些局限性,例如:
- 参数调整困难:
PID控制器的参数需要根据不同的车辆和交通环境进行调整,调整过程繁琐且容易陷入局部最优。
- 鲁棒性不足:
面对复杂的交通环境,PID控制器的控制性能容易受到外部扰动的影响,导致控制精度下降甚至失稳。
- 未能充分利用车辆动态信息:
传统的控制策略往往只考虑车辆的速度和距离信息,而忽略了车辆的加速度、横摆角速度等动态信息,导致控制性能受限。
因此,为了克服传统ACC系统的不足,提高其鲁棒性、稳定性和控制精度,需要采用更先进的控制策略。模型预测控制(MPC)凭借其优秀的预测能力、优化能力和处理约束能力,成为设计高性能ACC系统的理想选择。
二、模型预测控制(MPC)的基本原理
模型预测控制(Model Predictive Control, MPC)是一种基于模型的控制策略,其核心思想是在每个采样时刻,基于被控对象的动态模型,预测未来一段时间内的系统行为,并通过优化算法,求解出一个最优的控制序列,然后将控制序列的第一个控制量作用于被控对象。在下一个采样时刻,重复上述步骤,实现滚动优化控制。
MPC的主要组成部分包括:
- 模型(Model):
用于描述被控对象动态行为的数学模型。模型的精度直接影响到MPC的控制性能。常见的模型包括线性模型、非线性模型、状态空间模型等。
- 预测(Prediction):
基于模型和当前状态,预测未来一段时间内系统的输出。预测的精度和长度对控制性能有重要影响。
- 优化(Optimization):
根据设定的目标函数和约束条件,求解出一个最优的控制序列。目标函数通常包含控制误差、控制量大小等因素。约束条件则包括对控制量、状态量等的限制。
- 滚动优化(Rolling Optimization):
在每个采样时刻,重复预测、优化和控制的过程,实现滚动优化控制。
MPC的优势在于:
- 具有预测能力:
MPC能够根据模型预测未来一段时间内的系统行为,从而实现超前控制,提高控制性能。
- 能够处理约束:
MPC能够显式地考虑控制量、状态量等的约束,从而保证系统的安全性和稳定性。
- 能够处理多变量系统:
MPC能够处理多个输入和输出的系统,实现多变量的协调控制。
- 能够在线优化:
MPC能够根据实时信息进行在线优化,从而适应环境的变化,提高鲁棒性。
三、基于MPC的自适应巡航控制系统设计
将MPC应用于ACC系统,可以实现更精确、更安全的车辆控制。基于MPC的ACC系统设计主要包括以下几个步骤:
-
建立车辆动力学模型: 首先需要建立描述车辆纵向运动的动力学模型。该模型通常包括车辆的速度、加速度、位置以及与前方车辆的距离、相对速度等状态变量。模型的精度直接影响到MPC的控制性能,因此需要选择合适的模型复杂度。常见的模型包括线性模型、非线性模型等。
-
确定目标函数和约束条件: 目标函数用于描述控制目标,例如最小化与期望速度的偏差,最小化与前车距离的偏差,最小化控制量的变化率等。约束条件则包括对车辆速度、加速度、制动能力以及与前车距离的限制。
-
设计优化算法: 选择合适的优化算法求解最优的控制序列。常见的优化算法包括二次规划(Quadratic Programming, QP)、线性规划(Linear Programming, LP)、非线性规划(Nonlinear Programming, NLP)等。优化算法的选择取决于模型的复杂度和计算资源。对于线性模型和二次目标函数,可以采用QP算法;对于非线性模型,则需要采用NLP算法。
-
实现滚动优化控制: 在每个采样时刻,基于当前状态,预测未来一段时间内的系统行为,并通过优化算法求解最优的控制序列,然后将控制序列的第一个控制量作用于车辆。在下一个采样时刻,重复上述步骤,实现滚动优化控制。
-
参数调整和鲁棒性分析: 对MPC的参数进行调整,例如预测长度、控制权重等,以获得最佳的控制性能。同时,需要对MPC系统的鲁棒性进行分析,以评估其在面对外部扰动和模型不确定性时的控制性能。可以采用蒙特卡洛模拟等方法进行鲁棒性分析。
四、MPC在ACC系统中的优势与挑战
相比于传统的控制策略,MPC在ACC系统中具有以下优势:
- 更高的控制精度:
MPC能够根据模型预测未来一段时间内的系统行为,从而实现超前控制,提高控制精度。
- 更好的鲁棒性:
MPC能够处理模型不确定性和外部扰动,从而提高系统的鲁棒性。
- 更强的约束处理能力:
MPC能够显式地考虑控制量、状态量等的约束,从而保证系统的安全性和稳定性。
- 更强的适应性:
MPC能够根据实时信息进行在线优化,从而适应环境的变化,提高系统的适应性。
然而,将MPC应用于ACC系统也面临着一些挑战:
- 模型精度要求高:
MPC的控制性能依赖于模型的精度,因此需要建立精确的车辆动力学模型。
- 计算复杂度高:
MPC需要在线优化,计算复杂度较高,对车载计算资源要求较高。
- 参数调整困难:
MPC的参数需要根据不同的车辆和交通环境进行调整,调整过程繁琐。
- 对实时性要求高:
MPC需要在每个采样时刻进行在线优化,对实时性要求较高。
五、基于MPC的ACC系统的未来发展趋势
随着汽车电子技术和人工智能技术的快速发展,基于MPC的ACC系统也将朝着以下几个方向发展:
- 自适应模型预测控制(Adaptive MPC):
通过在线估计模型参数,实时更新模型,提高MPC的鲁棒性和适应性。
- 分布式模型预测控制(Distributed MPC):
将ACC系统与其他车辆或交通基础设施进行协同控制,提高交通效率和安全性。
- 基于深度学习的MPC:
利用深度学习技术构建车辆动力学模型,提高模型精度和泛化能力。
- 基于云计算的MPC:
将MPC的计算任务转移到云端,利用云计算的强大计算能力,降低对车载计算资源的要求。
- 与人类驾驶员协同的MPC:
设计能够与人类驾驶员协同工作的ACC系统,实现人机协同驾驶,提高驾驶舒适性和安全性。
六、结论
基于模型预测控制的自适应巡航控制系统,凭借其优秀的预测能力、优化能力和处理约束能力,在提升驾驶舒适性、减轻驾驶员疲劳以及提高交通安全性方面具有巨大的潜力。虽然MPC在ACC系统中的应用还面临着一些挑战,但随着汽车电子技术和人工智能技术的快速发展,相信这些挑战将会被逐步克服。未来的ACC系统将会更加智能化、自适应化和协同化,为人们带来更加安全、舒适和便捷的驾驶体验。MPC作为一种先进的控制策略,将在其中发挥越来越重要的作用。 通过不断的研究和创新,基于MPC的ACC系统将会成为未来智能交通系统的重要组成部分,为构建更加安全、高效和可持续的交通环境做出贡献。
⛳️ 运行结果
🔗 参考文献
[1] 胡吉.基于MPC算法的混合动力汽车自适应巡航控制研究[D].重庆大学,2015.
[2] 罗莉华,龚李龙,李平,等.考虑驾驶员行驶特性的双模式自适应巡航控制设计[C]//中国过程控制会议.2011.
[3] 欧健,马帅,韩先胜,等.弯道车辆自适应巡航横纵向跟踪控制[J].重庆理工大学学报(自然科学), 2024, 38(6):63-72.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇