【FDTD - 1D、2D、3D自由空间】位于模拟域中心的点源会产生电磁辐射,然后这种辐射在真空中传播附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

有限差分时域(Finite-Difference Time-Domain, FDTD)方法是一种强大的、应用广泛的计算电磁学技术,用于模拟电磁波与各种介质相互作用的行为。该方法基于对麦克斯韦方程组的直接离散化,通过在时间和空间上迭代求解这些方程,来追踪电磁场随时间的演变。在自由空间中,点源作为一种理想化的辐射源,能够产生向四周传播的电磁辐射。理解这种点源在不同维度(一维、二维、三维)自由空间中的电磁辐射特性及其传播过程,对于掌握FDTD方法的基本原理以及其在更复杂电磁问题中的应用至关重要。本文将深入探讨在FDTD框架下,位于模拟域中心的一维、二维和三维自由空间中的点源如何产生电磁辐射,以及这种辐射如何在真空中传播的现象。

一、 FDTD方法的基本原理回顾

FDTD方法的核心思想是将时间和空间离散化。空间被划分为由网格点组成的离散网格,通常采用Cartesian网格。时间被划分为离散的时间步长。麦克斯韦方程组的微分形式被转化为差分形式,从而允许在网格点和时间步长上迭代计算电场(E)和磁场(H)的分量。

二、 一维自由空间中的点源辐射与传播

在一维自由空间中,电磁波只能沿着一个方向(例如x轴)传播。在这种情况下,可以将问题简化为只考虑沿着x轴传播的平面波。一个位于一维模拟域中心(例如x=0)的点源可以理想化为一个随时间变化的电流源或电场源。

在FDTD一维模拟中,通常只考虑电场的一个分量(例如EyEy)和磁场的一个分量(例如HzHz),它们互相垂直并垂直于传播方向。

在一维FDTD模拟中,需要特别处理边界条件,以模拟无限大的自由空间。常用的边界条件包括吸收边界条件(ABC),如完全匹配层(PML)或简单的一阶/二阶Mur边界条件。这些边界条件旨在吸收到达模拟域边缘的电磁波,防止它们反射回模拟区域,从而模拟开放空间环境。

通过一维FDTD模拟,可以直观地观察到点源产生的电磁脉冲如何随时间向两侧传播,脉冲的幅度随距离保持不变(在理想无耗散自由空间中),这与一维波动方程的解一致。

三、 二维自由空间中的点源辐射与传播

二维自由空间中的点源辐射更为复杂,因为它涉及到波在平面上的传播。一个位于二维模拟域中心(例如(x,y) = (0,0))的点源可以被视为一个随时间变化的线电流源或电场源,其方向垂直于二维平面(例如z方向)。

引言

时域有限差分 (Finite-Difference Time-Domain, FDTD) 方法作为计算电磁学领域中一种强大而灵活的数值模拟技术,广泛应用于各种电磁问题的求解,包括天线设计、电磁散射、光子晶体分析以及电磁波传播等。FDTD 方法的核心思想是将 Maxwell 方程组转化为差分形式,并在离散化的时空网格上进行迭代求解,从而模拟电磁场随时间的变化。在众多的应用场景中,模拟一个位于自由空间(真空)模拟域中心的点源产生的电磁辐射及其后续传播,是一个基础且重要的研究课题。这种基础场景有助于理解电磁波在无阻碍介质中的基本行为,并为更复杂的电磁环境模拟奠定基础。本文将深入探讨 FDTD 方法在模拟 1D、2D 和 3D 自由空间中中心点源产生的电磁辐射与传播的原理、实现细节以及不同维度下的特征,旨在阐明 FDTD 方法在此基础问题中的应用及其物理意义。

FDTD 方法基本原理与点源建模

FDTD 方法采用 Yee 网格,将电场分量和磁场分量交错放置在离散化的空间网格点上,并在时间上进行交替更新。例如,在 3D 空间中,电场分量更新使用磁场分量在上一时间步的信息,而磁场分量更新则使用电场分量在当前时间步的信息。这种交替更新确保了数值稳定性,并且准确地反映了电场和磁场之间的耦合关系。

点源在 FDTD 模拟中的建模通常是通过在某个特定的网格点(对应于模拟域的中心)引入一个随时间变化的激励电流密度 JJ 或电荷密度 ρρ 来实现的。在大多数模拟电磁辐射的场景中,我们更常关注电流源。一个理想的点电流源可以被模拟为一个在特定网格点上具有非零值的电流密度分量,而周围网格点的电流密度为零。激励信号通常是一个窄脉冲,例如高斯脉冲或正弦调制的高斯脉冲,以包含丰富的频率成分,便于分析不同频率电磁波的传播特性。

1D 自由空间中的电磁辐射与传播

虽然 1D 自由空间的概念在物理上是简化的,但在教学和理解 FDTD 方法基本原理方面却非常有用。

模拟结果会清晰地展示电磁波从中心源点向左右两侧传播。由于是 1D 空间,电磁波只能沿 x 轴传播,形成一对向外行进的波包。在理想自由空间中,这些波包将无限传播而不衰减(除了由于数值离散化引起的微小数值色散)。1D 模拟简单直观,有助于理解电场和磁场之间的相互激发以及波的传播过程。然而,1D 模拟无法捕捉真实的 3D 辐射模式。

2D 自由空间中的电磁辐射与传播

在 2D 自由空间中,电磁场可以在一个平面(例如 xy 平面)内传播。根据电场和磁场分量的方向,我们可以模拟不同的模式,例如 TE (Transverse Electric) 模式或 TM (Transverse Magnetic) 模式。

模拟结果将显示电磁波从中心源点向四周以圆形波前传播。随着时间的推移,圆形波前将不断向外扩展。在自由空间中,电磁波的能量密度随着与源点距离的平方衰减,这反映了能量在 2D 平面上的扩散。然而,由于能量的总量在无耗散介质中是守恒的,振幅的衰减与距离的平方根成反比。2D 模拟能够更真实地展现电磁波的径向传播特性,但仍无法 fully capture 3D 辐射的各向同性。

3D 自由空间中的电磁辐射与传播

Maxwell 方程组在 3D 空间中的离散化是 FDTD 方法中最完整的形式,需要考虑所有三个空间方向上的偏导数。将点源放置在 3D 模拟域的中心,并施加一个随时间变化的 JJ 激励。

模拟结果将呈现电磁波从中心源点向各个方向以球面波前传播。随着时间的推移,球面波前将不断向外扩展。在理想自由空间中,电磁波的能量密度随着与源点距离的平方衰减,振幅随着距离衰减,反映了能量在 3D 空间的扩散。3D 模拟能够最准确地模拟点源在自由空间中的辐射模式,特别是对于电偶极子源,其辐射强度在垂直于偶极子方向上最强,而在沿偶极子方向上为零。

数值实现与边界条件

在实际的 FDTD 模拟中,模拟域是有限的。为了模拟电磁波在自由空间中的无限传播,我们需要采用合适的吸收边界条件 (Absorbing Boundary Conditions, ABCs)。ACBs 的作用是吸收到达模拟域边界的电磁波,防止其反射回模拟域内部,从而模拟无限空间的特性。常用的 ABCs 包括 Liao 边界条件、PML (Perfectly Matched Layer) 边界条件等。其中 PML 边界条件因其良好的吸收效果而成为主流。PML 通过引入人工损耗层来衰减到达边界的电磁波。

总结与意义

通过 FDTD 方法模拟位于模拟域中心的点源在 1D、2D 和 3D 自由空间中产生的电磁辐射与传播,为理解电磁波的基本行为提供了直观且定量的方式。

  • 1D 模拟

     简化了问题,突出了波的单向传播,有助于理解电场和磁场之间的相互作用以及波的形成。

  • 2D 模拟

     展现了波的径向传播特性,揭示了能量在平面上的扩散,更接近于某些实际问题(例如微带线)。

  • 3D 模拟

     提供了最真实的物理场景,展示了球面波前以及点源(如电偶极子)的辐射模式,是研究天线辐射和自由空间电磁波传播的基础。

在所有维度下,FDTD 方法都能够有效地捕捉电磁波的产生、传播和与介质的相互作用。通过模拟不同类型的点源(例如不同方向的电流源),我们可以研究不同辐射模式的形成。此外,通过在模拟域中引入不同的介质,我们可以在这个基础之上进一步模拟电磁波在复杂环境中的传播和散射行为。

⛳️ 运行结果

🔗 参考文献

[1] 邹贤军.超宽带电磁场三维FDTD数值模拟[D].成都理工大学[2025-05-07].DOI:CNKI:CDMD:2.2006.139507.

[2] 刘四新,曾昭发,徐波.三维频散介质中地质雷达信号的FDTD数值模拟[J].吉林大学学报(地), 2006, 36(1):123-0127.DOI:10.3969/j.issn.1671-5888.2006.01.019.

[3] 林振,黄卡玛.FDTD结合蛙跳技术计算微波辐射下化学溶液温度[J].电波科学学报, 2004, 19(2):5.DOI:10.3969/j.issn.1005-0388.2004.02.014.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值