目录
ego_pose 2cam
ego_pose 是世界坐标系,ext是外参,
pose = ego_cam_poses[cam, frame]
c2w = pose @ ext
c2w是右边到左边,world转cam。
for cam_name in valid_cams :
lidar2cam = np.array(bev_4d_data['parameters_cam'][cam_name]["extrinsics"], dtype=np.float32)
lidar2vcs_t = bev_4d_data['parameters_lidar_at128']['lidar2vcs']['translation'] # xyz
lidar2vcs_q = bev_4d_data['parameters_lidar_at128']['lidar2vcs']['quaternion'] # wxyz
lidar2vcs_q = points_transform.list_to_array([lidar2vcs_q['qw'], lidar2vcs_q['qx'], lidar2vcs_q['qy'], lidar2vcs_q['qz']], (4))
lidar2vcs_mat = Quaternion(lidar2vcs_q).rotation_matrix
lidar2vcs_t = points_transform.list_to_array([lidar2vcs_t['x'], lidar2vcs_t['y'], lidar2vcs_t['z']], (3))
lidar2vcs = points_transform.get_RT_4x4(lidar2vcs_mat, lidar2vcs_t)
cam2vcs = lidar2vcs @ np.linalg.inv(lidar2cam)
VCS含义
“VCS”通常指的是“Vehicle Control System”(车辆控制系统)。这个系统负责控制车辆的动态行为,包括加速、制动和转向,以实现自动驾驶功能
ego_pose含义
“Ego_pose” 是指自动驾驶车辆在世界坐标系中的位置和姿态信息。它通常包括车辆的三维坐标(x, y, z)和朝向(如航向角或四元数),用于描述车辆相对于周围环境的动态状态。缺少“ego_pose” 信息时,车辆的状态可能被认为是静止的,因为没有足够的信息来描述其运动变化。通过实时更新“ego_pose”,系统能够有效地进行路径规划、环境感知和动态避障。
ext = extrinsics[cam]
pose = ego_cam_poses[cam, frame]
c2w = pose @ ext
cam2vcs
看代码中 cam2vcs
的计算方式,需要明确理解每个变换矩阵的含义。
lidar2cam
是从激光雷达坐标系到相机坐标系的变换矩阵。lidar2vcs
是从激光雷达坐标系到车辆坐标系的变换矩阵。
你在计算 cam2vcs
时的表达式:
cam2vcs = lidar2vcs @ np.linalg.inv(lidar2cam)
此表达式的意思是先将点从相机坐标系转换到激光雷达坐标系(通过 lidar2cam
的逆矩阵 np.linalg.inv(lidar2cam)
),然后从激光雷达坐标系转换到车辆坐标系(通过 lidar2vcs
变换)。
这种计算逻辑是合理的,即先应用从相机到激光雷达的逆变换,再应用从激光雷达到车辆的正变换,将点从相机坐标系转换到车辆坐标系。
lidar2vcs_t lidar2vcs_q 什么意思
在代码中,lidar2vcs_t
和 lidar2vcs_q
分别表示从激光雷达坐标系(lidar
)到车辆坐标系(vcs
,Vehicle Coordinate System)的平移向量和四元数旋转。
详细解释
-
lidar2vcs_t
:这是一个平移向量(translation vector),表示激光雷达坐标系在车辆坐标系中的位置。这个向量通常包含 x、y、z 三个分量,表示激光雷达相对于车辆坐标系的偏移量。lidar2vcs_t = bev_4d_data['parameters_lidar_at128']['lidar2vcs']['translation']
- 例如:
lidar2vcs_t = {'x': 1.0, 'y': 0.5, 'z': 0.2}
表示激光雷达相对于车辆坐标系在 x、y、z 方向上分别有 1.0、0.5 和 0.2 个单位的平移。
-
lidar2vcs_q
:这是一个四元数(quaternion),用于描述激光雷达坐标系相对于车辆坐标系的旋转。四元数通常以四个分量表示,w, x, y, z
,其中w
表示实部,x, y, z
表示虚部,用于描述三维空间中的旋转角度。lidar2vcs_q = bev_4d_data['parameters_lidar_at128']['lidar2vcs']['quaternion']
- 例如:
lidar2vcs_q = {'qw': 0.707, 'qx': 0.0, 'qy': 0.707, 'qz': 0.0}
表示旋转的四元数。 - 这个四元数可以通过库函数(如
Quaternion
类)转换为旋转矩阵,用于变换坐标。
综合说明
lidar2vcs_t
和lidar2vcs_q
的组合可以定义一个完整的 3D 变换(即从激光雷达坐标系到车辆坐标系的 4x4 变换矩阵),用于在不同坐标系之间进行点的转换。
ego_pose和ego_motion
ego_pose和ego_motion是自动驾驶和机器人领域中密切相关的概念,但它们的侧重点不同。
-
Ego_pose:
- 描述车辆在世界坐标系中的位置和姿态,包括三维坐标(x, y, z)和方向(如航向角或四元数)。
- 它提供了车辆的静态信息,反映了车辆在某一时刻的确切位置和方向。
-
Ego_motion:
- 描述车辆在一段时间内的运动状态,通常涉及位置和姿态的变化。
- 这包括车辆的速度、加速度、转向角等动态信息,反映车辆的运动轨迹和行为。
关系:
- Ego_pose 是 Ego_motion 的基础。通过对连续时间点的 ego_pose 进行比较,可以推导出 ego_motion。
- 例如,如果已知某时刻的 ego_pose,通过对后续时刻的 ego_pose 进行分析,可以计算出车辆的运动状态(例如速度和加速度)。
简单总结:
- Ego_pose 提供位置和姿态的快照,而 Ego_motion 描述了在时间维度上这些参数的变化。两者共同帮助自动驾驶系统理解车辆的状态和行为。
跟踪,动态物体
for tracklet in object_tracklets_vehicle[i]:
track_id = int(tracklet[0])
if track_id >= 0:
obj_pose_vehicle = np.eye(4)
obj_pose_vehicle[:3, :3] = quaternion_to_matrix_numpy(tracklet[4:8])
obj_pose_vehicle[:3, 3] = tracklet[1:4]
vehicle2local = np.linalg.inv(obj_pose_vehicle)
points_xyz_obj = points_xyz_vehicle @ vehicle2local.T
points_xyz_obj = points_xyz_obj[..., :3]
length = object_info[track_id]['length']
width = object_info[track_id]['width']
height = object_info[track_id]['height']
bbox = [[-length/2, -width/2, -height/2], [length/2, width/2, height/2]]
obj_corners_3d_local = bbox_to_corner3d(bbox)
points_xyz_inbbox = inbbox_points(points_xyz_obj, obj_corners_3d_local)
points_xyz_obj_mask = np.logical_or(points_xyz_obj_mask, points_xyz_inbbox)
points_xyz_dict[f'obj_{track_id:03d}'].append(points_xyz_obj[points_xyz_inbbox])
points_rgb_dict[f'obj_{track_id:03d}'].append(points_rgb[points_xyz_inbbox])