使得二次型的值为特征值的向量一定是特征向量吗

本文探讨了n阶实对称矩阵的特征值和单位特征向量的问题。当特征值不重复时,最大和最小特征值对应的单位特征向量是方程的唯一解,而对于中间特征值,存在多个单位向量解。通过引理证明了加权平均数的特性,并利用正交变换展示了单位特征向量的非唯一性。
摘要由CSDN通过智能技术生成

1、问题描述

A A A n n n阶实对称矩阵( n ⩾ 3 n\geqslant3 n3),每个特征值都是相异的(特征方程无重根), λ \lambda λ是其中一个特征值,对关于 x \boldsymbol{x} x的方程 x T A x = λ subject to  x T x = 1 \boldsymbol{x}^TA\boldsymbol{x}=\lambda\quad \text{subject to}\ \boldsymbol{x}^T\boldsymbol{x}=1 xTAx=λsubject to xTx=1,显然 λ \lambda λ对应的单位特征向量 v \boldsymbol{v} v是一个解,因为 v T A v = v T ( A v ) = v T ( λ v ) = λ ( v T v ) = λ \boldsymbol{v}^TA\boldsymbol{v}=\boldsymbol{v}^T(A\boldsymbol{v})=\boldsymbol{v}^T(\lambda\boldsymbol{v})=\lambda(\boldsymbol{v}^T\boldsymbol{v})=\lambda vTAv=vT(Av)=vT(λv)=λ(vTv)=λ,现在我想知道, v \boldsymbol{v} v是方程的唯一解吗,也就是说还有别的单位向量也满足这个方程吗?

2、结论预告

A A A的最大、最小特征值, v \boldsymbol{v} v确为方程的唯一解;对 A A A的中间特征值,方程还有其他解。

3、证明

3.1、引理1

加权平均数介于最大最小值之间,取最大值和最小值的权重组合是唯一的,取中间值的权重组合是不唯一的。
证明:设 x 1 > x 2 > ⋯ > x n x_1\gt x_2\gt\cdots\gt x_n x1>x2>>xn,记 x ˉ = w 1 x 1 + w 2 x 2 + ⋯ + w n x n \bar{x}=w_1x_1+w_2x_2+\cdots+w_nx_n xˉ=w1x1+w2x2++wnxn,其中 ∑ i = 1 n w i = 1  ,且  ∀ 1 ⩽ i ⩽ n  有  0 ⩽ w i ⩽ 1 \sum_{i=1}^nw_i=1\ \text{,且}\ \forall 1\leqslant i\leqslant n\ \text{有}\ 0\leqslant w_i\leqslant1 i=1nwi=1 ,且 1in  0wi1
w 1 = 1 w_1=1 w1=1,其余权重为0,此时的加权平均数为 x 1 x_1 x1,欲证这是唯一的取到最大值的权重组合,则作差证明之
x 1 − x ˉ = x 1 − ( w 1 x 1 + w 2 x 2 + ⋯ + w n x n ) = ( 1 − w 1 ) x 1 − ( w 2 x 2 + ⋯ + w n x n ) = ( w 2 + ⋯ + w n ) x 1 − ( w 2 x 2 + ⋯ + w n x n ) = w 2 ( x 1 − x 2 ) + ⋯ + w n ( x 1 − x n ) > 0 \begin{aligned} x_1-\bar{x}&=x_1-(w_1x_1+w_2x_2+\cdots+w_nx_n)\\ &=(1-w_1)x_1-(w_2x_2+\cdots+w_nx_n)\\ &=(w_2+\cdots+w_n)x_1-(w_2x_2+\cdots+w_nx_n)\\ &=w_2(x_1-x_2)+\cdots+w_n(x_1-x_n)\\ &\gt0 \end{aligned} x1xˉ=x1(w1x1+w2x2++wnxn)=(1w1)x1(w2x2++wnxn)=(w2++wn)x1(w2x2++wnxn)=w2(x1x2)++wn(x1xn)>0
即任意其他的权重组合,都无法使得加权平均数取得最大值,也即取得最大加权平均值的权重组合是唯一的。
同理可证最小值的情况。
对于中间值,可通过特殊值法证明多解的存在性。
比如三个数3,2,1,权重组合0,1,0可使得加权平均取到2,
0 × 3 + 1 × 2 + 0 × 1 = 2 0\times3+1\times2+0\times1=2 0×3+1×2+0×1=2而权重组合 1 / 3 , 1 / 3 / 1 / 3 1/3,1/3/1/3 1/3,1/3/1/3也能使得加权平均取到2,
1 / 3 × 3 + 1 / 3 × 2 + 1 / 3 × 1 = 2 1/3\times3+1/3\times2+1/3\times1=2 1/3×3+1/3×2+1/3×1=2
因此取到中间值的权重组合有多个。

3.2、引理2

正交变换是保长度的,任意一个向量左乘正交矩阵后长度不变,即设 P P P是正交矩阵,则 ∣ ∣ x ∣ ∣ = ∣ ∣ P x ∣ ∣ ||\boldsymbol{x}||=||P\boldsymbol{x}|| x=Px
证明:
∣ ∣ P x ∣ ∣ 2 = ( P x ) T P x = x T P T P x = x T ( P T P ) x = x T I x = x T x = ∣ ∣ x ∣ ∣ 2 ||P\boldsymbol{x}||^2=(P\boldsymbol{x})^TP\boldsymbol{x}=\boldsymbol{x}^TP^TP\boldsymbol{x}=\boldsymbol{x}^T(P^TP)\boldsymbol{x}=\boldsymbol{x}^TI\boldsymbol{x}=\boldsymbol{x}^T\boldsymbol{x}=||\boldsymbol{x}||^2 Px2=(Px)TPx=xTPTPx=xT(PTP)x=xTIx=xTx=x2
∵ ∣ ∣ x ∣ ∣ ⩾ 0 且 ∣ ∣ P x ∣ ∣ ⩾ 0 ∴ ∣ ∣ x ∣ ∣ = ∣ ∣ P x ∣ ∣ \because||\boldsymbol{x}||\geqslant0且||P\boldsymbol{x}||\geqslant0\quad\therefore||\boldsymbol{x}||=||P\boldsymbol{x}|| x0Px0x=Px

3.3、正式证明

Q ( x ) = x T A x ,   x T x = 1 Q(\boldsymbol{x})=\boldsymbol{x}^TA\boldsymbol{x},\ \boldsymbol{x}^T\boldsymbol{x}=1 Q(x)=xTAx, xTx=1
∵ A \because A A是实对称的
∴ ∃ \therefore\exist 正交矩阵 P P P使得 D = P T A P D=P^TAP D=PTAP,其中 D D D满足
D = [ λ 1 ⋱ λ n ] D=\begin{bmatrix} \lambda_1&&\\ &\ddots&\\ &&\lambda_n \end{bmatrix} D=λ1λn
如此,经过变量代换 x = P y \boldsymbol{x}=P\boldsymbol{y} x=Py A A A的二次型 x T A x \boldsymbol{x}^TA\boldsymbol{x} xTAx可化为标准型 y T D y \boldsymbol{y}^TD\boldsymbol{y} yTDy,则
Q ( x ) = λ 1 y 1 2 + ⋯ + λ n y n 2 = y 1 2 λ 1 + ⋯ + y n 2 λ n Q(\boldsymbol{x})=\lambda_1y_1^2+\cdots+\lambda_ny_n^2=y_1^2\lambda_1+\cdots+y_n^2\lambda_n Q(x)=λ1y12++λnyn2=y12λ1++yn2λn
∵ P \because P P是正交矩阵,由保长度性, y 1 2 + y 2 2 + ⋯ + y n 2 = y T y = x T x = 1 y_1^2+y_2^2+\cdots+y_n^2=\boldsymbol{y}^T\boldsymbol{y}=\boldsymbol{x}^T\boldsymbol{x}=1 y12+y22++yn2=yTy=xTx=1
可以把 Q ( x ) Q(\boldsymbol{x}) Q(x)视为各特征值的加权平均,将 y i 2 y_i^2 yi2视为权重,则显然加权平均数介于最大最小特征值之间。如果要取到最大特征值,权重组合只能是1,0,0,…,0,即 y = e 1 = [ 1 , 0 , ⋯   , 0 ] T \boldsymbol{y}=\boldsymbol{e_1}=[1,0,\cdots,0]^T y=e1=[1,0,,0]T;如果要取到最小值,权重组合只能是0,…,0,1,即 y = e n = [ 0 , ⋯   , 0 , 1 ] T \boldsymbol{y}=\boldsymbol{e_n}=[0,\cdots,0,1]^T y=en=[0,,0,1]T,取中间值的组合是不唯一的,还是取特殊值说明。
对于某个二次型的矩阵 A A A,满足
D = [ 1 2 3 ] D=\begin{bmatrix} 1&&\\ &2&\\ &&3 \end{bmatrix} D=123亦即 Q ( x ) = x T A x = x 1 2 + 2 x 2 2 + 3 x 3 2 Q(\boldsymbol{x})=\boldsymbol{x}^TA\boldsymbol{x}=x_1^2+2x_2^2+3x_3^2 Q(x)=xTAx=x12+2x22+3x32,如果要使二次型取到中间特征值2, x \boldsymbol{x} x可以是 [ 0 , 1 , 0 ] T [0,1,0]^T [0,1,0]T
Q ( [ 0 , 1 , 0 ] T ) = 0 2 + 2 × 1 2 + 3 × 0 2 = 2 Q([0,1,0]^T)=0^2+2\times1^2+3\times0^2=2 Q([0,1,0]T)=02+2×12+3×02=2
也可以取 [ 3 / 3 , 3 / 3 , 3 / 3 ] T [\sqrt{3}/3,\sqrt{3}/3,\sqrt{3}/3]^T [3 /3,3 /3,3 /3]T:
Q ( [ 3 / 3 , 3 / 3 , 3 / 3 ] T ) = ( 3 / 3 ) 2 + 2 × ( 3 / 3 ) 2 + 3 × ( 3 / 3 ) 2 = 2 Q([\sqrt{3}/3,\sqrt{3}/3,\sqrt{3}/3]^T)=(\sqrt{3}/3)^2+2\times(\sqrt{3}/3)^2+3\times(\sqrt{3}/3)^2=2 Q([3 /3,3 /3,3 /3]T)=(3 /3)2+2×(3 /3)2+3×(3 /3)2=2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值