YOLOv8改进 | 主干篇 | RepViT从视觉变换器(ViT)的视角重新审视CNN(全新的YOLOv8改进策略)

本文介绍了如何将RepViT结构应用到YOLOv8的主干网络中以提升性能。RepViT是将轻量级ViT的设计应用于CNN的尝试,通过结构性重组、扩展比率调整、宏观和微观设计优化实现性能和效率的提升。作者详细阐述了RepViT的基本原理、核心代码,并提供了详细的网络结构添加教程,包括多个修改步骤,以实现YOLOv8的改进。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、本文介绍

本文给大家来的改进机制是RepViT,用其替换我们整个主干网络,其是今年最新推出的主干网络,其主要思想是将轻量级视觉变换器(ViT)的设计原则应用于传统的轻量级卷积神经网络(CNN)。我将其替换整个YOLOv8的Backbone,实现了大幅度涨点。我对修改后的网络(我用的最轻量的版本),在一个包含1000张图片包含大中小的检测目标的数据集上(共有20+类别),进行训练测试,发现所有的目标上均有一定程度的涨点效果,下面我会附上基础版本和修改版本的训练对比图。

推荐指数:⭐⭐⭐⭐⭐

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备    

目录

一、本文介绍

二、RepViT基本原理

三、RepViT的核心代码 

四、手把手教你添加RepViT网络结构

修改一

修改二

03-10
### RepViT 模型架构 RepViT 是一种新型的神经网络架构,旨在从视觉变换(Vision Transformer, ViT)的角度重新审视移动设备上的卷积神经网络CNN)。这种设计融合了两种不同类型的模型优势,在保持计算效率的同时提升了性能[^1]。 #### 架构特点 - **多尺度特征提取**:RepViT 利用了分层结构来进行多尺度特征的学习。每一层都包含了若干个重复使用的模块,这些模块内部集成了局部感知机制与全局注意力机制。 - **可重参数化组件**:为了提高训练过程中的稳定性和泛化能力,RepViT 中引入了一些特殊的操作符,它们可以在推理阶段被转换成更简单的形式而不损失精度。 - **灵活配置选项**:存在多种版本如 RepViT-M1、M2 和 M3,各自拥有不同的通道数量和堆叠层数设置,从而允许开发者根据不同应用场景的需求调整资源消耗水平[^3]。 ```python import torch.nn as nn class RepViTBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1): super(RepViTBlock, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding) def forward(self, x): return self.conv(x) ``` ### 应用场景 RepViT 主要应用于计算机视觉领域内的各种任务,特别是那些对于速度敏感的应用程序,比如实时物体识别或者边缘端部署的任务。由于其高效的特性,使得它非常适合用于智能手机和平板电脑等低功耗平台之上执行复杂的图像处理工作流[^5]。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值