YOLOv8改进模块之C2f_Bottleneck_BoT

本文介绍了一种对YOLOv8的改进,通过在C2f模块后添加BottleneckTransformer,形成C2f_Bottleneck_BoT,实验证明新模型在颈部网络中具有提高均值平均精度的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

针对YOLOv8的梯度分流模块C2f,我们在其最后一层的bottleneck之后添加了Bottleneck Transformer(BoT),从而得到了C2f_Bottleneck_BoT模块,并且将该模块替换掉YOLOv8颈部网络中的所有C2f模块。经过实验表明,改进后的模型均值平均精度有所增加。

### 改进YOLOv8中C2f_VSS功能的技术细节 #### C2f_VSS模块概述 C2f_VSS是一种改进的瓶颈层结构,在YOLO系列模型中有广泛应用。通过调整深度增益和其他参数设置,可以在保持计算效率的同时提升性能[^2]。 #### 参数配置优化 当构建或修改`C2f_VSS`组件时,需考虑如下几个方面: - **通道数调整**:如果当前不是输出层,则应根据宽度乘子(`gw`)重新定义输入到输出之间的通道数量转换逻辑;即确保`c2=make_divisible(c2*gw,8)`这一操作被执行。 - **重复次数控制**:对于特定类型的模块(如`BottleneckCSP`, `SPPCSPC`, 和 `C2f_VSS`),应在原有参数列表的基础上插入表示迭代次数的变量`n`,以此实现更灵活的设计空间探索。 ```python if m in {BottleneckCSP, SPPCSPC, C2f_VSS}: args.insert(2, n) # 插入重复次数作为第三个参数 ``` #### 结合其他先进特性 为了进一步增强`C2f_VSS`的表现力,可以引入来自不同研究工作的创新点,比如RT-DETR提出的`TransformerDecoderHead`以及自适应可变形卷积(DCNV2-Dynamic)[^1]。这些技术有助于捕捉更加复杂的特征模式并改善最终预测效果。 #### 轻量化设计考量 借鉴YOLO-MS中的`MSBlock`理念,可以通过精简内部连接方式来减少整体复杂度而不牺牲太多准确性[^3]。具体来说,就是尝试用较少但更为有效的路径替代传统密集型架构,从而使得整个网络既紧凑又高效。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值