YOLOv8改进 | 注意力机制 | 添加ACmix自注意力与卷积混合模型改善模型特征识别效率(提高FPS+检测效率)

本文介绍了ACmix,一种结合自注意力和卷积的改进模型,用于提高YOLOv8在目标检测任务中的性能。通过1x1卷积投影和运算分解,ACmix在保持低计算成本的同时,增强了全局和局部特征的捕获,提升了FPS和检测效率。手把手教程教读者如何将ACmix集成到模型中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、本文介绍

本文给大家带来的改进机制是ACmix自注意力机制的改进版本,它的核心思想是,传统卷积操作和自注意力模块的大部分计算都可以通过1x1的卷积来实现。ACmix首先使用1x1卷积对输入特征图进行投影,生成一组中间特征,然后根据不同的范式,即自注意力和卷积方式,分别重用和聚合这些中间特征。这样,ACmix既能利用自注意力的全局感知能力,又能通过卷积捕获局部特征,从而在保持较低计算成本的同时,提高模型的性能。

推荐指数:⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备    

目录

一、本文介绍

二、ACmix的框架原理

2.1 ACMix的基本原理 

2.1.1 自注意力和卷积的整合

2.1.2 运算分解与重构

三、ACmix的核心代码 

四、手把手教你添加ACmix

4.1 ACmix添加步骤

4.1.1 步骤一

4.1.2 步骤二

4.1.3 步骤三

五、ACmix的yaml文件和运行记录

5.1 ACMix的yaml版本一(推荐)

4.2.2 ACMix的yaml版本二

评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值