YOLOv8改进 | 主干篇 | 低照度增强网络Retinexformer改进黑夜目标检测 (全网独家首发)

本文介绍了Retinexformer,一种针对低光照图像的增强网络,通过一阶段Retinex-based框架结合照明信息恢复,改善低光图像质量。文章详细阐述了框架原理、核心代码及添加到YOLO模型的方法,并提供了训练过程记录。Retinexformer在低照度目标检测中表现出色,具有较小的GFLOPs和参数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、本文介绍

本文给大家带来的改进机制是低照度图像增强网络Retinexformer,其是由今年最新发布的针对于黑夜目标检测的改进机制(非常适合大家用来发表论文),其主要思想是通过一种新颖的一阶段Retinex-based框架来增强低光图像。这个框架结合了照明信息的估计和损坏恢复,目的是提高低光图像的质量。核心在于照明引导的变换器,这种变换器使用照明信息来引导长期依赖性的建模,从而在不同照明条件下更好地处理图像。欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。

欢迎大家订阅我的专栏一起学习YOLO!

下图展示了Retinexformer相对于各种图像增强网络的对比效果 ,最新版本的Retinexformer在各种场景都表现的很优秀,该网络的GFLOPs为18.4,参数量为308w在低照度网络中是非常小的。

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备      

目录

一、本文介绍

二、 Retinexformer的框架原理

三、 Retinexformer的核心代码

四、Retinexformer的添加方式 

4.1 修改一

4.2 修改二 

4.3 修改三 

关闭混合精度验证!

打印计算量的问题!

五、Retinexformer的yaml文件和运行记录

5.1 Retinexformer的yaml文件

### RetinexFormer介绍 RetinexFormer是一种基于Transformer架构的一阶段光照图像增强方法。该模型旨在解决传统光照增强算法中存在的色彩失真、细节丢失等问题,通过引入内部引导变换(IGT),将传统的Retinex理论与现代深度学习技术相结合[^2]。 #### 模型结构特点 - **一阶段框架设计**:RetinexFormer采用了一种简单而有效的一阶段框架(ORF)。此框架能够直接从输入的光图像中估计出合理的照明信息,并据此调整像素亮度分布,从而实现自然且真实的视觉效果提升[^3]。 - **融合Retinex理论**:利用经典的Retinex理论来指导网络的设计,在保持原有颜色特性的基础上改善暗部区域的表现力。具体来说,就是把原始图片分解成反射分量和光照分量两部分处理后再合成最终结果[^1]。 - **高效的数据表示能力**:借助于自注意力机制的优势,使得模型可以更好地捕捉全局上下文依赖关系以及局部特征之间的关联性,进而提高了对于复杂场景下不同物体表面材质属性的理解精度。 ```python import torch from retinexformer import RetinexFormerModel model = RetinexFormerModel() input_image = torch.randn(1, 3, 256, 256) # 假设输入尺寸为 (batch_size=1, channels=3, height=256, width=256) output_enhanced_image = model(input_image) print(output_enhanced_image.shape) # 输出应具有相同的形状 ``` ### 应用领域 - **夜间监控视频质量优化**:通过对采集到的画面进行实时预处理,使后续分析任务更加容易执行,比如人脸识别、车牌识别等操作准确性会显著提高[^4]。 - **自动驾驶辅助系统中的环境感知模块**:当车辆行驶至光线条件较差路段时,经过增强后的影像有助于传感器更精准地判断周围障碍物位置及距离信息,保障行车安全。 - **医疗影像诊断支持工具开发**:某些特殊情况下拍摄所得X射线片可能存在曝光不足现象,此时运用此类技术可帮助医生获得更为清晰直观的观察视角,有利于病情评估工作开展。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值