YOLOv8改进 | 主干篇 | 轻量级的低照度图像增强网络IAT改进YOLOv8暗光检测(全网独家首发)

本文介绍了将Illumination Adaptive Transformer (IAT)应用于YOLOv8,以增强低光照条件下的图像检测能力。IAT是一种轻量级模型,能模拟ISP管道并动态调整图像的光照条件,达到曝光校正和图像增强的效果。通过详细步骤指导,解释了如何将IAT集成到YOLOv8中,包括核心代码修改和训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、本文介绍

本文给大家带来的改进机制是轻量级的变换器模型:Illumination Adaptive Transformer (IAT),用于图像增强和曝光校正。其基本原理是通过分解图像信号处理器(ISP)管道到局部和全局图像组件,从而恢复在低光或过/欠曝光条件下的正常光照sRGB图像。具体来说,IAT使用注意力查询来表示和调整ISP相关参数,例如颜色校正、伽马校正。模型具有约90k参数和约0.004s的处理速度,能够在低光增强和曝光校正的基准数据集上持续实现优于最新技术(State-of-The-Art, SOTA)的性能,我们将其用于YOLOv8上来改进我们模型的暗光检测能力,同时本文的内容不影响其它的模块改进。

 欢迎大家订阅我的专栏一起学习YOLO! 

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制 

目录

一、本文介绍

二、基本原理

2.1 IAT原理

2.2 IAT的核心模块

三、核心代码 

四、手把手教你添加IAT低照度图像增强网络

 4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、IAT的yaml文件和运行记录

5.1 IAT的yaml文件

### YOLOv8照度图像增强改进方法 #### 轻量级照度图像增强网络IAT的应用 为了改善YOLOv8暗光环境中的表现,一种有效的策略是引入轻量级照度图像增强网络IAT。此网络能够有效地提升原始输入图片的质量,使得后续的目标检测更加精准[^1]。 ```python import torch from yolov8 import YOLOv8 from iat_network import IATNetwork def enhance_and_detect(image_path, model_weights='yolov8.pth'): # 加载预训练好的YOLOv8模型 yolo_model = YOLOv8() yolo_model.load_state_dict(torch.load(model_weights)) # 初始化IAT网络用于图像增强 enhancer = IATNetwork() # 对输入图像进行增强处理 enhanced_image = enhancer.enhance(image=image_path) # 使用增强后的图像作为YOLOv8的输入来进行目标检测 detections = yolo_model.detect(enhanced_image) return detections ``` #### SCINet对于黑暗目标检测性能的贡献 除了IAT之外,SCINet也是一个重要的工具来解决照下物体识别难题。通过其独特的架构——即级联照明学习与权重共享机制,SCINet可以在不增加过多计算成本的情况下大幅改善图像质量,进而帮助YOLOv8更好地完成任务[^2][^4]。 ```python class EnhancedYOLOv8(YOLOv8): def __init__(self, scinet=None): super().__init__() self.scinet = scinet def detect(self, image): if self.scinet is not None: # 如果存在SCINet,则先对其进行图像增强操作 image = self.scinet.enhance(image) # 执行标准的目标检测流程 results = super().detect(image) return results ``` #### 结合传统方法的优势 值得注意的是,在某些情况下,简单而快速的传统算法可能更适合嵌入到像YOLO这样的实时系统中。尽管它们不如现代深度学习技术那样复杂多变,但在特定应用场景里却能发挥重要作用[^3]。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值