YOLOv9训练结果分析->mAP、Precision、Recall、FPS、Confienc、混淆矩阵分析

本文详细分析YOLOv9训练后的结果,包括模型性能评估数据集、权重文件、混淆矩阵、mAP、Precision、Recall等关键指标,帮助理解模型表现和评估方法。同时,介绍了TensorBoard日志、F1_Curve、P_curve、R_curve和PR_curve等图表的含义,以及FPS和IoU在目标检测中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 简介

这篇博客,主要给大家讲解我们在训练yolov9时生成的结果文件中各个图片及其中指标的含义,帮助大家更深入的理解,以及我们在评估模型时和发表论文时主要关注的参数有那些本文通过举例训练过程中的某一时间的结果来帮助大家理解,大家阅读过程中如有任何问题可以在评论区提问出来,我会帮助大家解答首先我们来看一个在一次训练完成之后都能生成多少个文件如下图所示,下面的文章讲解都会围绕这个结果文件来介绍。

专栏地址:

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值