YOLOv10改进 | 损失函数篇 | InnerIoU、InnerSIoU、InnerWIoU、FocusIoU等损失函数

一、本文介绍

本文给大家带来的是YOLOv10最新改进,为大家带来最近新提出的InnerIoU的内容同时用Inner的思想结合SIoU、WIoU、GIoU、DIoU、EIOU、CIoU等损失函数,形成 InnerIoU、InnerSIoU、InnerWIoU、等新版本损失函数,同时还结合了Focus和AIpha思想形成的新的损失函数,其中Inner的主要思想是:引入了不同尺度的辅助边界框来计算损失,(该方法在处理非常小目标的检测任务时表现出良好的性能(但是在其它的尺度检测时也要比普通的损失要好)文章会详细探讨这些损失函数如何提高YOLOv10在各种检测任务中的性能,包括提升精度、加快收敛速度和增强模型对复杂场景的适应性。

 专栏回顾:YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备 

目录

一、本文介绍

二、各种损失函数的基本原理 

2.1 交集面积和并集面积

2.2 InnerIoU的思想 

2.2.1结合InnerIoU各种损失函数的效果图 

2.3 InnerSIoU

2.4 InnerWioU

2.5 InnerGIoU

2.6 InnerDIoU

2.7 InnerEIoU

2.8 InnerCIoU

2.9 FocusLoss 

三、InnerIoU等损失函数代码块

3.1 代码一

四、添加InnerIoU等损失函数到模型中

4.1 步骤一 

4.2 步骤二

4.3 步骤三 

### 改进YOLOv8中的SIoU损失函数 为了提升YOLOv8模型的性能,可以考虑改进其中的位置损失部分——即采用更先进的交并比(Intersection over Union, IoU)变体作为损失函数。具体来说,在YOLOv8中引入SIoU(Symmetric IoU),能够更好地处理边界框回归问题。 #### SIoU计算公式及其特点 SIoU不仅关注预测框与真实框之间的重叠区域面积比例,还额外加入了中心点距离惩罚项和纵横比一致性约束[^3]: \[ \text{SIoU} = \frac{\left|A\cap B\right|}{\left|A\cup B\right|}-d(A_c,B_c)+r(\alpha_A,\alpha_B)\] - \( A \) 和 \( B \) 分别表示预测框和真实框; - \( d(A_c,B_c) \) 表示两个矩形框质心间的欧氏距离除以其最小封闭矩形对角线长度的比例; - \( r(\alpha_A,\alpha_B) \) 是关于两者宽高比差异度量的一项; 这种设计使得优化过程更加注重于使预测框尽可能接近目标物体的真实形状及位置。 #### 实现方法 要在YOLOv8框架内集成上述提到的新颖损失机制,需修改源码中负责定义各类IoU形式的部分。通常情况下,这涉及到调整训练配置文件以及相应模块内的核心算法逻辑。对于想要启用SIoU的情况而言,则应按照官方文档指示找到指定选项开关,并将其设置为开启状态[^4]。 ```yaml # 配置文件片段示意 loss: box: true # 启用自定义Box IoU类型 giou: false diou: false ciou: false siou: true # 开启SIoU支持 ``` 此外,还需确保项目依赖库已更新至最新版本以便兼容新特性。如果遇到任何编译错误或运行时异常,请参照社区论坛寻求帮助或查阅相关技术资料获取解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值