YOLOv10改进 | 损失函数篇 | InnerIoU、InnerSIoU、InnerWIoU、FocusIoU等损失函数

一、本文介绍

本文给大家带来的是YOLOv10最新改进,为大家带来最近新提出的InnerIoU的内容同时用Inner的思想结合SIoU、WIoU、GIoU、DIoU、EIOU、CIoU等损失函数,形成 InnerIoU、InnerSIoU、InnerWIoU、等新版本损失函数,同时还结合了Focus和AIpha思想形成的新的损失函数,其中Inner的主要思想是:引入了不同尺度的辅助边界框来计算损失,(该方法在处理非常小目标的检测任务时表现出良好的性能(但是在其它的尺度检测时也要比普通的损失要好)文章会详细探讨这些损失函数如何提高YOLOv10在各种检测任务中的性能,包括提升精度、加快收敛速度和增强模型对复杂场景的适应性。

 专栏回顾:YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备 

目录

一、本文介绍

二、各种损失函数的基本原理 

2.1 交集面积和并集面积

2.2 InnerIoU的思想 

2.2.1结合InnerIoU各种损失函数的效果图 

2.3 InnerSIoU

2.4 InnerWioU

2.5 InnerGIoU

2.6 InnerDIoU

2.7 InnerEIoU

2.8 InnerCIoU

2.9 FocusLoss 

三、InnerIoU等损失函数代码块

3.1 代码一

四、添加InnerIoU等损失函数到模型中

4.1 步骤一 

4.2 步骤二

4.3 步骤三 

### YOLOv8 中改进损失函数的目的 为了提高YOLOv8模型在不同场景下的表现,尤其是针对小目标检测等问题,引入了一系列新的损失函数。这些新损失函数旨在解决传统方法中存在的边界框定位不精确、背景噪声干扰大等问题。 #### 提高边界框回归精度 通过采用更加精细的度量标准来评估预测框与真实框之间的重叠程度,如InnerIoUInnerSIoUInnerWIoU等指标[^2]。这类改进有助于减少误检率并改善物体位置估计准确性。 #### 增强对困难样本的学习能力 对于一些难以区分的目标(例如遮挡严重或尺度变化较大的对象),传统的交叉熵损失可能无法提供足够的梯度信息用于优化权重参数。而像FocusIoU这样的新型损失则能够更好地捕捉到此类特殊情况下的特征差异,从而促进网络收敛于更好的局部极值点。 --- ### 改进后的效果展示 经过上述调整之后,在多个公开数据集上的实验结果显示: - **更快的速度**:由于减少了不必要的计算开销并且提高了每一轮迭代的有效性; - **鲁棒性强**:即使面对复杂多变的实际环境也能保持稳定输出质量。 ```python import torch from yolov8 import YOLOv8Loss # 假设这是定义好的loss类 def train_step(model, images, targets): predictions = model(images) loss_fn = YOLOv8Loss( iou_type='inneriou', # 使用特定类型的IoU作为评价准则之一 focal_loss_alpha=0.25, focal_loss_gamma=2.0 ) total_loss = loss_fn(predictions, targets) optimizer.zero_grad() total_loss.backward() optimizer.step() return total_loss.item() ``` 此代码片段展示了如何利用改进版的`YOLOv8Loss`来进行训练过程中的反向传播更新操作。其中特别指定了使用`'inneriou'`形式的交并比计算方式以及其他超参设置以适应具体任务需求。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值