YOLOv11改进 | Neck篇 | 利用Damo-YOLO的RepGFPN改进特征融合网络结构(含独家整理版本)

一、本文介绍

本文给大家带来的最新改进机制是Damo-YOLO的RepGFPN重参数化泛化特征金字塔网络),利用其优化YOLOv11的Neck部分,可以在不影响计算量的同时大幅度涨点(亲测在小目标和大目标检测的数据集上效果均表现良好涨点幅度超级高!)。RepGFPN不同于以往提出的改进模块,其更像是一种结构一种思想(一种处理事情的方法),RepGFPN相对于BiFPN和之前的FPN均有一定程度上的优化效果,本文含两个版本一个是个人总结的使用方法,另一个是官方的使用方法。

    专栏回顾:YOLOv11改进系列专栏——本专栏持续复习各种顶会内容——科研必备


目录

  一、本文介绍

二、GFPN的框架原理

​编辑

三、GFPN的核心代码

四、手把手教你添加GFPN

 4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、GFPN的yaml文件

### YOLOv11 Neck 部分架构和作用详解 #### 一、Neck 架构概述 YOLOv11Neck 结构设计旨在增强多尺度特征融合能力,从而提升目标检测性能。借鉴了 BiFPN (Bidirectional Feature Pyramid Network) 的设计理念,在原有基础上进行了优化调整[^1]。 #### 二、具体组成部分及其功能描述 - **BiFPN 层** - 实现双向跨层连接机制,允许低分辨率特征图向高分辨率传播的同时也支持反方向的信息流动。 - 使用加权特征融合方式代替简单的相加操作,使得不同层次间的重要性得以区分对待。 - **路径规范化(Path Normalization)** - 解决由于多次上采样/下采样的累积效应而导致的梯度消失或爆炸问题。 - 对每条路径上的权重实施 L2 正则化处理,确保训练过程更加稳定可靠。 - **节点自适应调整(Node Adaptive Adjustment)** - 动态调节各个节点处来自上下相邻层级贡献的比例关系。 - 借助于注意力机制来自动学习最优配置方案,提高模型对于复杂场景下的鲁棒性表现。 ```python def bifpn_layer(features, num_channels=256): P3_in, P4_in, P5_in = features # Top-down pathway with lateral connections and weighted fusion P5_td = ConvBNReLU(num_channels)(P5_in) P4_td = Add()([ConvBNReLU(num_channels)(P4_in), UpSampling2D()(P5_td)]) # Bottom-up pathway with additional refinement steps P3_out = ConvBNReLU(num_channels)(P3_in + Downsample(P4_td)) P4_out = ConvBNReLU(num_channels)((P4_in + P4_td)/2.) P5_out = ConvBNReLU(num_channels)((P5_in + MaxPooling2D()(P4_td))/2.) return [P3_out, P4_out, P5_out] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值