简介
几何深度学习是一种新兴的机器学习领域,它结合了深度学习的强大功能与几何学的严谨结构。这一领域的核心思想是通过深度学习模型来理解和利用数据中的几何结构,从而在各种复杂任务中实现更优的性能。几何深度学习不仅仅关注数据的表征,更重视数据内在的几何关系和先验,如对称性、不变性和流形等。
理论基础
几何深度学习的理论基础源自于19世纪的埃尔朗根纲领,该纲领由德国数学家克莱因提出,主张将几何学定义为研究在某一类变换下保持不变的性质。在现代深度学习中,这一纲领被赋予了新的生命,研究者们试图将这种对称性和不变性的思想应用于深度学习模型中,以期在处理复杂数据时能够更好地捕捉其内在的几何特性。
计算机视觉的最新进展,主要来自于新颖的深度学习方法,以及基于大量数据来执行特定任务的分层机器学习模型,随之而来的性能提升,引发了其他科学领域类似应用的淘金热。
随着深度学习技术的发展,人们已经不满足于将深度学习应用于传统的图像、声音、文本等数据上,而是对更一般的几何对象如网络、空间点云、曲面等应用深度学习算法,这一领域被称为几何深度学习(Geometric deep learning)。
下文中,我们将解释GDL中「几何」的含义,同时会将其与其他神经网络结构进行比较。最后,我们还会带大家深入了解它擅长的多种任务,以及最新前沿应用。 放心,即使没有太多的基础,读完这篇文章后,也能充分体会到GDL的魅力。
深度学习巨头LeCun牵头的几何深度学习在讲啥?
2016年,Bronstein的一篇名为《Geometric deep learning: going beyond Euclidean data》的文章来势汹汹,该文的后两位作者分别是Facebook前人工智能团队博士后成员Joan Bruna和现人工智能负责人Yann LeCun,这也算得上是全明星阵容,因此这篇文章的含金量和参考性就得以保证。
在这篇文章中,研究者首次引入了几何深度学习(GDL)一词。
文章表示,几何深度学习(GDL)定义了新兴的研究领域,该领域主要是针对非欧几里得数据的深度学习。
需要几何深度学习资料的可关助工重号:AI技术星球 回复:211 获取
非欧几里得数据
对于非欧几里得数据,两点之间的最短有效路径不是它们之间的欧几里得距离。我们将使用网格对此进行可视化。在下图中,可以看到,通过离散体素,将经典斯坦福兔子表示为网格(非欧几里得)或呈网格状体积(欧几里得)之间的区别。
点A和B之间的欧式距离是它们