基于强化学习的自动化剪枝模型

AI科技评论今天为大家介绍一个GitHub上最新开源的一个基于强化学习的自动化剪枝模型,本模型在图像识别的实验证明了能够有效减少计算量,同时还能提高模型的精度。

项目地址:

https://github.com/freefuiiismyname/cv-automatic-pruning-transformer

1

介绍

目前的强化学习工作很多集中在利用外部环境的反馈训练agent,忽略了模型本身就是一种能够获得反馈的环境。本项目的核心思想是:将模型视为环境,构建附生于模型的 agent ,以辅助模型进一步拟合真实样本。

大多数领域的模型都可以采用这种方式来优化,如cv/多模态等。它至少能够以三种方式工作:

1.过滤噪音信息,如删减语音或图像特征;

2.进一步丰富表征信息,如高效引用外部信息;

3.实现记忆、联想、推理等复杂工作,如构建重要信息的记忆池。

这里推出一款早期完成的裁剪机制transformer版本(后面称为APT),实现了一种更高效的训练模式,能够优化模型指标;此外,可以使用动态图丢弃大量的不必要单元,在指标基本不变的情况下,大幅降低计算量。

该项目希望为大家抛砖引玉。

2

为什么要做自动剪枝

在具体任务中,往往存在大量毫无价值的信息和过渡性信息,有时不但对任务无益,还会成为噪声。比如:表述会存在冗余/无关片段以及过渡性信息;动物图像识别中,有时候背景无益于辨别动物主体,即使是动物部分图像,也仅有小部分是关键的特征。

以transformer为例,在进行self-attention计算时其复杂度与序列长度平方成正比。长度为10,复杂度为100;长度为9,复杂度为81。

利用强化学习构建agent,能够精准且自动化地动态裁剪已丧失意义部分,甚至能将长序列信息压缩到50-100之内(实验中有从500+的序列长度压缩到个位数的示例),以大幅减少计算量。

实验中,发现与裁剪agent联合训练的模型比普通方法训练的模型效果要更好。

3

模型介绍及实验

模型主体

基于transformer的视觉预训练模型ViT是本项目的模型主体,具体细节可以查看论文:《An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale》

自动化裁剪的智能体

对于强化学习agent来说,最关键的问题之一是如何衡量动作带来的反馈。为了评估单次动作所带来的影响,使用了以下三步骤:

1、使用一个普通模型(无裁剪模块)进行预测;

2、使用一个带裁剪器的模型(执行一次裁剪动作)进行预测;

3、对比两次预测的结果,若裁剪后损失相对更小,则说明该裁剪动作帮助了模型进一步拟合真实状况,应该得到奖励;反之,应该受到惩罚。

但是在实际预测过程中,模型是同时裁剪多个单元的,这或将因为多个裁剪的连锁反应而导致模型失效。训练过程中需要构建一个带裁剪器的模型(可执行多次裁剪动作),以减小该问题所带来的影响。

综上,本模型使用的是三通道模式进行训练。

关于裁剪器的模型结构设计,本模型中认为如何衡量一个信息单元是否对模型有意义,建立于其自身的信息及它与任务的相关性上。

因此以信息单元本身及它与CLS单元的交互作为agent的输入信息。

实验

以上加载的均为ViT-B_16,resolution为224*224。

4

使用说明

环境

下载经过预先训练的模型(来自Google官方)

本项目使用的型号:ViT-B_16(您也可以选择其它型号进行测试)

训练与推理

下载好预训练模型就可以跑了。

CIFAR-10和CIFAR-100会自动下载和培训。如果使用其他数据集,您需要自定义data_utils.py。

在裁剪模式的推理过程中,预期您将看到如下格式的输出。

默认的batch size为72、gradient_accumulation_steps为3。当GPU内存不足时,您可以通过它们来进行训练。

注:相较于原始的ViT,APT(Automatic pruning transformer)的训练步数、训练耗时都会上升。原因是使用pruning agent的模型由于总会丢失部分信息,使得收敛速度变慢,同时为了训练pruning agent,也需要多次的观测、行动、反馈。

致谢

感谢基于pytorch的图像分类项目(https://github.com/jeonsworld/ViT-pytorch),本项目是在此基础上做的研发。

最后再附上一次项目地址,欢迎感兴趣的读者Star

https://github.com/freefuiiismyname/cv-automatic-pruning-transformer

由于微信公众号试行乱序推送,您可能不再能准时收到AI科技评论的推送。为了第一时间收到AI科技评论的报道, 请将“AI科技评论”设为星标账号,以及常点文末右下角的“在看”。

<think>嗯,用户想要找关于模型剪枝和轻量化的详细教程,特别是step-by-step的指导。首先,我需要确认用户的具体需求。他们可能是在做深度学习或机器学习项目,遇到了模型太大,无法在资源有限的设备上部署的问题,所以想通过剪枝和轻量化来优化模型。 接下来,我应该回顾一下模型剪枝和轻量化的基本概念,确保回答的准确性。模型剪枝分为结构化和非结构化,用户提到的结构化剪枝可能更符合他们的需求,因为结构化剪枝移除的是整个结构单元,比如通道或层,这样更容易在实际硬件上加速,而非结构化剪枝可能只是移除个别参数,需要特定硬件支持。 然后,我需要整理出一个步骤指南。通常,这类教程会包括环境准备、模型训练、剪枝方法选择、剪枝实施、微调、评估和部署。每一步都需要详细说明,比如在PyTorch中如何使用现成的剪枝API,或者如何自定义剪枝器。 用户可能还需要具体的代码示例,这样他们可以跟着操作。比如,展示如何使用PyTorch的l1_unstructured剪枝方法,或者如何实现通道剪枝。此外,微调过程也很重要,剪枝后的模型通常需要再训练来恢复性能。 还要考虑相关的工具和框架,比如TensorFlow的Model Optimization Toolkit、PyTorch的TorchPruning,以及第三方库如Distiller。这些工具能帮助用户更高效地实现剪枝和轻量化。 可能用户对如何选择剪枝比例、评估剪枝后的模型性能,以及实际应用中的挑战(比如精度下降和部署兼容性)有疑问。因此,在回答中需要涵盖这些常见问题,并提供解决方案,比如渐进式剪枝自动化剪枝技术。 最后,确保引用提供的参考资料,特别是引用中的结构化剪枝部分,以增强回答的可信度。同时,生成的相关问题要引导用户深入探索,比如比较不同剪枝方法或处理部署中的问题。</think>### 模型剪枝与轻量化分步教程 #### **Step 1: 环境准备** - **框架选择**: 推荐使用支持动态计算图的框架(如PyTorch或TensorFlow),便于剪枝操作和参数调整。例如: ```python import torch from torch import nn from torch.nn.utils import prune ``` - **数据集**: 根据任务选择标准数据集(如CIFAR-10/ImageNet),或自定义数据集。 #### **Step 2: 基础模型训练** - **模型设计**: 构建目标模型(例如ResNet、MobileNet等轻量化网络)[^2]。 - **完整训练**: 确保模型达到基准精度,剪枝需基于预训练权重。例如: ```python model = ResNet18() criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) ``` #### **Step 3: 剪枝方法选择** - **非结构化剪枝**: 移除不重要的单个权重(如L1-norm剪枝): ```python # PyTorch内置剪枝示例 prune.l1_unstructured(module, name='weight', amount=0.3) ``` - **结构化剪枝**: 移除整个通道或层(需自定义或使用库如`TorchPruning`)[^3]: ```python from torchpruner import ORandomRanker, BasePruner pruner = BasePruner(model, example_inputs=torch.randn(1,3,224,224)) pruner.prune(global_pruning_ratio=0.5) # 剪枝50%通道 ``` #### **Step 4: 剪枝实施与微调** - **迭代剪枝**: 逐步剪枝(如每次剪枝10%并微调),避免精度骤降: ```python for epoch in range(10): prune_step(model, amount=0.1) # 自定义剪枝函数 train_one_epoch(model, dataloader, optimizer) ``` - **微调策略**: 使用更小的学习率和正则化(如Dropout)恢复模型性能。 #### **Step 5: 评估与部署** - **性能指标**: 计算剪枝模型的参数量(Params)、FLOPs和精度损失。 - **部署优化**: 使用TensorRT、ONNX等工具量化并加速模型。 --- ### **核心工具与库推荐** | 工具/库 | 功能 | 适用场景 | |------------------|-------------------------|----------------------| | TensorFlow Model Optimization Toolkit | 结构化剪枝、量化 | TensorFlow生态 | | PyTorch TorchPruning | 通道/层剪枝 | PyTorch动态图 | | Distiller (Intel) | 高级剪枝策略分析 | 研究级优化 | --- ### **常见问题与解决** 1. **精度下降严重** - **原因**: 剪枝比例过高或未充分微调 - **方案**: 采用渐进式剪枝(逐步增加剪枝比例)[^1] 2. **部署兼容性问题** - **原因**: 非结构化剪枝导致稀疏矩阵格式不被硬件支持 - **方案**: 优先选择结构化剪枝或使用专用推理引擎(如TensorRT) --- ### **扩展阅读** - **自动化剪枝**: 基于强化学习/遗传算法自动搜索最优剪枝策略[^1] - **硬件感知剪枝**: 结合目标设备的计算特性(如GPU张量核心)设计剪枝模式[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值