GTX 2080TI TensorFlow GPU基准测试:2018年最佳GPU

本文对比了五款常用GPU在深度学习领域的性能,包括RTX2080Ti、RTX2080、GTX1080Ti、TitanV和TeslaV100。结果显示,截至2018年10月,RTX2080Ti在单GPU深度学习研究中表现最佳,尤其是在FP32和FP16精度下。文章详细分析了各GPU在不同模型上的性能,并考虑了成本因素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有人经常问,深度学习的最佳GPU是什么?近日Lambda给出了答案,他们通过比较研究人员常用的前5个GPU来获得答案(测试结果也考虑到了成本和性能):

  • RTX 2080 Ti

  • RTX 2080

  • GTX 1080 Ti

  • Titan V

  • Tesla V100

 

·  结  ·  果  ·  总  ·  结  ·

 

截至2018年10月8日,NVIDIA RTX 2080 Ti是运行TensorFlow的单GPU深度学习研究的最佳GPU。其他与这款GPU相比将是:

 

  • FP32下比 1080 Ti 快 37%,FP16下快 62%,价格贵25%

  • FP32下比 2080 快 35%,FP16下快 47%,价格贵25%

  • FP32下比 Titan V 快 96%,FP16下快3%,成本约为二分之一

  • FP32下比 V100 快 80%,FP16下快82%,成本约为五分之一

 

 

·  结  ·  果  ·  深  ·  入  ·

 

通过测量FP32和FP16吞吐量来评估每个GPU的性能,同时训练常见模型。我们将每个型号的GPU吞吐量除以1080 Ti的吞吐量,这降标准化数据并提供了每个GPU与1080 Ti的加速比,是衡量处理同一工作的两个系统的相对性指标。

 

各个型号上GPU的吞吐量

 

FP32所有模型的平均速度与1080 Ti的对比

 

FP16所有模型的平均速度与1080 Ti的对比

 

最后,我们将每个GPU的值除以系统成本来计算最佳GPU:

 

 

2080 Ti vs V100 2080 Ti真的那么快吗?

 

2080 Ti的速度比V100快80%,但是价格比V100便宜了非常多,这是为什么?答案很简单:NVIDIA希望细分市场,以便那些支付意愿比较高的人只购买他们的TESLA系列卡。RTX和GTX系列仍然提供较好的性价比。

 

如果您不是在使用AWS,Azure或者Google Cloud,那么贵买2080 Ti可能要好得多。但是,有一些关键的用例,V100可以派上用场:

 

  1. 如果你需要FP64计算,如果你正在进行计算流体动力学,N体模拟或者其他需要高数值京都(FP64)的工作,那么您需要购买Titan V100。如果您不确定是否需要FP64,则不需要。

  2. 如果你绝对需要32GB的内存,V100可能有意义。然而,这是很少见的,只有5%的用户有这样的需求。大多数人使用像ResNet、VGG、Inception、SSD或Yolo之类的。

 

所以,你还在想,为什么有人会购买V100?它归结为营销。

 

原始性能数据

FP32 吞吐量

Model / GPU20802080 TiTitan VV1001080 Ti
ResNet-50209.89286.05298.28368.63203.99
ResNet-15282.78110.24110.13131.6982.83
InceptionV3141.9189.31204.35242.7130.2
InceptionV461.68178.6490.656.98
VGG16123.01169.28190.38233133.16
AlexNet2567.383550.113729.644707.672720.59
SSD300111.04148.51153.55186.8107.71

FP16 吞吐量

Model/GPU20802080 TiTitan VV1001080 Ti
VGG16181.2238.45270.27333.33149.39
ResNet-15262.67103.2984.92108.5462.74

FP32 (Sako)

Model/GPU20802080 TiTitan VV1001080 Ti
VGG16120.39163.26168.59222.22130.8
ResNet-15243.4375.1861.8280.0853.45

FP16 和1080 Ti加速比

Model/GPU20802080 TiTitan VV1001080 Ti
VGG161.211.601.812.231.00
ResNet-1521.001.651.351.731.00

FP32 训练加速

Model/GPU20802080 TiTitan VV1001080 Ti
VGG160.921.251.291.701.00
ResNet-1520.811.411.161.501.00

实验方法

  • 所有的模型都在合成数据集上训练,这将GPU性能和CPU预处理性能隔离开来。

  • 对于每个GPU,对每个模型进行10次训练。测试每秒处理的图像数量,然后在10次实验中取平均值。

  • 通过对图像/秒得分并将其除以特定模型的最小图像/秒得分来计算加速基准。这基本显示了相对基准的百分比改善。(在此使用了1080 Ti)

Vivado2023是一款集成开发环境软件,用于设计和验证FPGA(现场可编程门阵列)和可编程逻辑器件。对于使用Vivado2023的用户来说,license是必不可少的。 Vivado2023的license是一种许可证,用于授权用户合法使用该软件。许可证分为多种类型,包括评估许可证、开发许可证和节点许可证等。每种许可证都有不同的使用条件和功能。 评估许可证是免费提供的,让用户可以在一段时间内试用Vivado2023的全部功能。用户可以使用这个许可证来了解软件的性能和特点,对于初学者和小规模项目来说是一个很好的选择。但是,使用评估许可证的用户在使用期限过后需要购买正式的许可证才能继续使用软件。 开发许可证是付费的,可以永久使用Vivado2023的全部功能。这种许可证适用于需要长期使用Vivado2023进行开发的用户,通常是专业的FPGA设计师或工程师。购买开发许可证可以享受Vivado2023的技术支持和更新服务,确保软件始终保持最新的版本和功能。 节点许可证是用于多设备或分布式设计的许可证,可以在多个计算机上安装Vivado2023,并共享使用。节点许可证适用于大规模项目或需要多个处理节点进行设计的用户,可以提高工作效率和资源利用率。 总之,Vivado2023 license是用户在使用Vivado2023时必须考虑的问题。用户可以根据自己的需求选择合适的许可证类型,以便获取最佳的软件使用体验。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值