11_根轨迹法

根轨迹法的基本概率(*)

基本概率

根轨迹法:

三大分析校正方法之一

根轨迹:

系统某一参数由 0 → ∞ 0\rightarrow\infty 0变化时, λ \lambda λ s s s平面相应变化所描绘出来的轨迹

根轨迹法的特点:

  • 图解方法,直观、形象
  • 适合于研究当系统某一参数变化时,系统性能的变化趋势
  • 近似方法,不十分精确

例1 系统结构图如图所示,分析 λ \lambda λ随开环增益 K K K变化的趋势

在这里插入图片描述

G ( s ) = K s ( 0.5 s + 1 ) = K ∗ = 2 K s ( s + 2 ) { K : 开环增益 K ∗ : 根轨迹增益 Φ ( s ) = G ( s ) 1 + G ( s ) = K ∗ s 2 + 2 s + K ∗ D ( s ) = s 2 + 2 s + K ∗ = 0 λ 1 , 2 = − 1 ± 1 − K ∗ \begin{aligned} G(s)&=\frac{K}{s(0.5s+1)}=\frac{K^*=2K}{s(s+2)}\\ &\begin{cases}K:\quad开环增益\\K^*:\quad根轨迹增益\end{cases}\\ \Phi(s)&=\frac{G(s)}{1+G(s)}=\frac{K^*}{s^2+2s+K^*}\\ D(s)&=s^2+2s+K^*=0\\ \lambda_{1,2}&=-1\pm\sqrt{1-K^*}\\ \end{aligned} G(s)Φ(s)D(s)λ1,2=s(0.5s+1)K=s(s+2)K=2K{K:开环增益K:根轨迹增益=1+G(s)G(s)=s2+2s+KK=s2+2s+K=0=1±1K
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 根据根轨迹,可以大致对系统的动态性能和稳定性做出判断
  • 开环传递函数为首1标准型时,对应的系数 K ∗ K^* K为根轨迹增益(没有闭环的根轨迹增益)

根轨迹方程及其含义

在这里插入图片描述

G ( s ) = K ∗ s − p Φ ( s ) = G ( s ) 1 + G ( s ) D ( s ) = 1 + G ( s ) = 0 G ( s ) = − 1 , 根轨迹方程 { ∣ G ( s ) ∣ = K ∗ ∣ s − p ∣ = 1 ∠ G ( s ) = − ∠ ( s − p ) = ( 2 k + 1 ) π \begin{aligned} G(s)&=\frac{K^*}{s-p}\\ \Phi(s)&=\frac{G(s)}{1+G(s)}\\ D(s)&=1+G(s)=0\\ G(s)&=-1,\quad根轨迹方程\\ &\begin{cases}|G(s)|=\frac{K^*}{|s-p|}=1\\\angle G(s)=-\angle(s-p)=(2k+1)\pi\\\end{cases} \end{aligned} G(s)Φ(s)D(s)G(s)=spK=1+G(s)G(s)=1+G(s)=0=1,根轨迹方程{G(s)=spK=1G(s)=(sp)=(2k+1)π
一般情况下
G ( s ) H ( s ) = K ∗ ( s − z 1 ) . . . ( s − z m ) ( s − p 1 ) ( s − p 2 ) . . . ( s − p n ) = K ∗ ∏ i = 1 m ( s − z i ) ∏ j = 1 n ( s − p j ) Φ ( s ) = G ( s ) 1 + G ( s ) H ( s ) G ( s ) H ( s ) = K ∗ ( s − z 1 ) . . . ( s − z m ) ( s − p 1 ) ( s − p 2 ) . . . ( s − p n ) = − 1 , 根轨迹方程 ∣ G ( s ) H ( s ) ∣ = K ∗ ∣ s − z 1 ∣ . . . ∣ s − z m ∣ ∣ s − p 1 ∣ ∣ s − p 2 ∣ . . . ∣ s − p n ∣ = K ∗ ∏ i = 1 m ∣ s − z i ∣ ∏ j = 1 n ∣ s − p j ∣ = 1 模值条件 ∠ G ( s ) H ( s ) = ∑ i = 1 m ∠ ( s − z i ) − ∑ j = 1 n ∠ ( s − p i ) = ( 2 k + 1 ) π 相角条件 \begin{aligned} G(s)H(s)&=\frac{K^*(s-z_1)...(s-z_m)}{(s-p_1)(s-p_2)...(s-p_n)}=\frac{K^*\prod_{i=1}^m(s-z_i)}{\prod_{j=1}^n(s-p_j)}\\ \Phi(s)&=\frac{G(s)}{1+G(s)H(s)}\\ G(s)H(s)&=\frac{K^*(s-z_1)...(s-z_m)}{(s-p_1)(s-p_2)...(s-p_n)}=-1,\quad根轨迹方程\\ |G(s)H(s)|&=\frac{K^*|s-z_1|...|s-z_m|}{|s-p_1||s-p_2|...|s-p_n|}=\frac{K^*\prod_{i=1}^m|s-z_i|}{\prod_{j=1}^n|s-p_j|}=1\quad模值条件\\ \angle G(s)H(s)&=\sum_{i=1}^m\angle(s-z_i)-\sum_{j=1}^n\angle(s-p_i)=(2k+1)\pi\quad相角条件\\ \end{aligned} G(s)H(s)Φ(s)G(s)H(s)G(s)H(s)G(s)H(s)=(sp1)(sp2)...(spn)K(sz1)...(szm)=j=1n(spj)Ki=1m(szi)=1+G(s)H(s)G(s)=(sp1)(sp2)...(spn)K(sz1)...(szm)=1,根轨迹方程=sp1∣∣sp2∣...∣spnKsz1∣...∣szm=j=1nspjKi=1mszi=1模值条件=i=1m(szi)j=1n(spi)=(2k+1)π相角条件

例2 判定 s i s_i si是否为根轨迹上的点

在这里插入图片描述

G ( s ) = K ∗ ( s + 1 ) ( s + 5 ) 根轨迹方程 : G ( s ) = − 1 模值条件 : K ∗ = ∣ s + 1 ∣ ∣ s + 5 ∣ 相角条件 : − ∠ ( s − p 1 ) − ∠ ( s − p 2 ) = ( 2 k + 1 ) π Δ 1 = − 2 { K Δ 1 ∗ = ∣ − 2 + 1 ∣ ∣ − 2 + 5 ∣ = 3 √ − ∠ ( − 2 + 1 ) − ∠ ( − 2 + 5 ) = − 180 − 0 = − 180 √ Δ 2 = − 8 { K Δ 2 ∗ = ∣ − 8 + 1 ∣ ∣ − 8 + 5 ∣ = 21 √ − ∠ ( − 8 + 1 ) − ∠ ( − 8 + 5 ) = − 360 × Δ 3 = − 7 + j 4 { K Δ 3 ∗ = ∣ − 7 + j 4 + 1 ∣ ∣ − 7 + j 4 + 5 ∣ = 32.25 √ − ∠ ( − 7 + j 4 + 1 ) − ∠ ( − 7 + 4 j + 5 ) ≠ ( 2 k + 1 ) π × Δ 4 = − 3 + j 3 { K Δ 4 ∗ = ∣ − 3 + j 3 + 1 ∣ ∣ − 3 + j 3 + 5 ∣ = 13 √ − ∠ ( − 3 + j 3 + 1 ) − ∠ ( − 3 + j 3 + 5 ) = − 180 √ \begin{aligned} G(s)&=\frac{K*}{(s+1)(s+5)}\\ 根轨迹方程:\quad&G(s)=-1\\ 模值条件:&\quad K^*=|s+1||s+5|\\ 相角条件:&\quad-\angle{(s-p_1)}-\angle{(s-p_2)}=(2k+1)\pi\\ \Delta_1&=-2\quad\begin{cases}K^*_{\Delta_1}=|-2+1||-2+5|=3\quad\surd\\-\angle{(-2+1)}-\angle{(-2+5)=-180-0=-180}\quad\surd\end{cases}\\ \Delta_2&=-8\quad\begin{cases}K^*_{\Delta_2}=|-8+1||-8+5|=21\quad\surd\\-\angle{(-8+1)-\angle{(-8+5)=-360}\quad\times}\end{cases}\\ \Delta_3&=-7+j4\quad\begin{cases}K^*_{\Delta_3}=|-7+j4+1||-7+j4+5|=32.25\quad\surd\\-\angle{(-7+_j4+1)}-\angle{(-7+4j+5)\neq(2k+1)\pi}\quad\times\end{cases}\\ \Delta_4&=-3+j3\quad\begin{cases}K^*_{\Delta_4}=|-3+j3+1||-3+j3+5|=13\quad\surd\\-\angle{(-3+j3+1)-\angle{(-3+j3+5)}}=-180\quad\surd\end{cases} \end{aligned} G(s)根轨迹方程:模值条件:相角条件:Δ1Δ2Δ3Δ4=(s+1)(s+5)KG(s)=1K=s+1∣∣s+5∣(sp1)(sp2)=(2k+1)π=2{KΔ1=2+1∣∣2+5∣=3(2+1)(2+5)=1800=180=8{KΔ2=8+1∣∣8+5∣=21(8+1)(8+5)=360×=7+j4{KΔ3=7+j4+1∣∣7+j4+5∣=32.25(7+j4+1)(7+4j+5)=(2k+1)π×=3+j3{KΔ4=3+j3+1∣∣3+j3+5∣=13(3+j3+1)(3+j3+5)=180

在这里插入图片描述

  • s s s平面上任意的点,总存在一个 K ∗ K^* K,使其满足模值条件,但该点不一定是根轨迹上的点
  • s s s平面上满足相角条件的点(必定满足模值条件)一定在根轨迹上
  • 满足相角条件 s s s点位于根轨迹上的充分必要条件
  • 根轨迹上某点对应的 K ∗ K^* K值,应由模值条件确定

绘制根轨迹的基本法则(重点)

法则1: 根轨迹的起点和终点

根轨迹起始于开环极点,终止于开环零点;如果开环极点的个数n大于开环零点个数m,则有n-m条根轨迹终止于无穷处

在这里插入图片描述

法则2: 根轨迹的分支数,对称性和连续性

根轨迹的分支数=开环极点数;根轨迹连续且对称于实轴

  • 根轨迹对称于实轴,是因为根轨迹方程的解要么是单根要么是共轭的复数

法则3: 实轴上的根轨迹:

从实轴上最右端的开环零、极点算起,奇数开环零、极点到偶数开环零、极点之间的区域必是根轨迹。

在这里插入图片描述

根轨迹的相角关系由极点和零点共同决定

本质上是满足了相角条件
∠ G ( s ) H ( s ) = ∑ i = 1 m ∠ ( s − z i ) − ∑ j = 1 n ∠ ( s − p i ) = ( 2 k + 1 ) π 相角条件 \angle G(s)H(s)=\sum_{i=1}^m\angle(s-z_i)-\sum_{j=1}^n\angle(s-p_i)=(2k+1)\pi\quad相角条件\\ G(s)H(s)=i=1m(szi)j=1n(spi)=(2k+1)π相角条件

法则4: 根之和: ∑ i = 1 n λ i = C ( n − m ≥ 2 ) \sum_{i=1}^n\lambda_i=C(n-m\ge2) i=1nλi=C(nm2)

n − m ≥ 2 n-m\ge2 nm2时,闭环根之和保持一个常值

在这里插入图片描述

例题

例3

在这里插入图片描述

在这里插入图片描述

两个开环极点一个开环零点的常见根轨迹

在这里插入图片描述

法则5: 渐进线: { σ a = ∑ i = 1 n p i − ∑ j = 1 m z i n − m φ a = ( 2 k + 1 ) π n − m \begin{cases}\sigma_a=\frac{\sum_{i=1}^np_i-\sum_{j=1}^mz_i}{n-m}\\\varphi_a=\frac{(2k+1)\pi}{n-m}\end{cases} {σa=nmi=1npij=1mziφa=nm(2k+1)π

  • n>m时,n-m条根轨迹趋近于无穷远处的规律

  • σ a \sigma_a σa是渐近线与实轴的交点( σ a \sigma_a σa的求解本质上是法则四:根之和)

  • φ a \varphi_a φa是渐近线与实轴的夹角( φ a \varphi_a φa的求解满足相角条件)

在这里插入图片描述
在这里插入图片描述

法则6: 分离点d: ∑ i = 1 n 1 d − p i = ∑ j = 1 m 1 d − z j \sum_{i=1}^n\frac{1}{d-p_i}=\sum_{j=1}^m\frac{1}{d-z_j} i=1ndpi1=j=1mdzj1(对应重根)

在这里插入图片描述

  • 求分离点的本质是求重根所在的点,根据有重根时式子的特点,有以上推导
  • 重根减去极点的倒数之和等于重根减去零点的倒数之和

在这里插入图片描述

法则7: 与虚轴交点: { 系统临界稳定点 s = j w 是根的点 \begin{cases}系统临界稳定点\\s=jw是根的点\end{cases} {系统临界稳定点s=jw是根的点

在这里插入图片描述

  • 临界稳定点与 s = j w s=jw s=jw是根的点无本质区别
  • 若渐近线过虚轴,则虚轴上必有对应的根(根轨迹的连续性)
  • D ( j w ) = 0 D(jw)=0 D(jw)=0,也就是在 s = j w s=jw s=jw处的特征方程为零,求出的根即为根轨迹与虚轴的交点

法则8: 出射角/入射角: ∑ j = 1 m ∠ ( s − z j ) − ∑ i = 1 n ∠ ( s − p i ) = ( 2 k + 1 ) π \sum_{j=1}^m\angle(s-z_j)-\sum_{i=1}^n\angle(s-p_i)=(2k+1)\pi j=1m(szj)i=1n(spi)=(2k+1)π

在这里插入图片描述

  • 即满足相角条件

广义根轨迹

参数根轨迹

K ∗ K^* K之外其他参数变化时系统的根轨迹

例题

在这里插入图片描述

零度根轨迹

系统实质上处于正反馈时的根轨迹

在这里插入图片描述

  • 仅相角条件改变

  • 对应绘制根轨迹的法则3、5、8改变(都与相角条件有关)

例题

在这里插入图片描述

在这里插入图片描述

关于根轨迹对称性的一个定理

若开环零极点均为偶数个,且关于一条平行于虚轴的直线左右对称分布,则根轨迹一定关于该直线左右对称。

在这里插入图片描述

总结

  • 关于根轨迹,首先得区分零点、极点、根的概念

    • 零点、极点、根其实是复变函数中的概率

    • 根轨迹法中的零点极点指的开环传递函数的零点极点

    • 根则是令闭环传递函数的特征根 D ( s ) = 0 D(s)=0 D(s)=0, 也是闭环传递函数的极点

    • 从这个角度根轨迹其实就是闭环传递函数极点的轨迹

    • 而在之前的学习中,我们知道复域中每个极点都对应时域响应中的一个模态

    • 因此随着极点的变化,系统的响应也发生变化

    • 而与极点类似,零点对系统的响应也产生影响

  • 关于根轨迹的绘制

    • 根轨迹的核心是 D ( s ) = 0 D(s)=0 D(s)=0,对于 180 ° 180° 180°根轨迹有 G ( s ) = 1 G(s)=1 G(s)=1,对于 0 ° 0° 根轨迹有 G ( s ) = − 1 G(s)=-1 G(s)=1, 它们仅是相角条件不同
    • 模值条件

    ∣ G ( s ) H ( s ) ∣ = K ∗ ∣ s − z 1 ∣ . . . ∣ s − z m ∣ ∣ s − p 1 ∣ ∣ s − p 2 ∣ . . . ∣ s − p n ∣ = K ∗ ∏ i = 1 m ∣ s − z i ∣ ∏ j = 1 n ∣ s − p j ∣ = 1 模值条件 |G(s)H(s)|=\frac{K^*|s-z_1|...|s-z_m|}{|s-p_1||s-p_2|...|s-p_n|}=\frac{K^*\prod_{i=1}^m|s-z_i|}{\prod_{j=1}^n|s-p_j|}=1\quad模值条件\\ G(s)H(s)=sp1∣∣sp2∣...∣spnKsz1∣...∣szm=j=1nspjKi=1mszi=1模值条件

    • 相角条件
      ∠ G ( s ) H ( s ) = ∑ i = 1 m ∠ ( s − z i ) − ∑ j = 1 n ∠ ( s − p i ) = ( 2 k + 1 ) π 相角条件 \angle G(s)H(s)=\sum_{i=1}^m\angle(s-z_i)-\sum_{j=1}^n\angle(s-p_i)=(2k+1)\pi\quad相角条件\\ G(s)H(s)=i=1m(szi)j=1n(spi)=(2k+1)π相角条件

    • 8大基本法则需掌握

    • 在分析系统性能时,常用有(求分离点对应的 K ∗ K^* K)

    K ∗ = ∏ j = 1 n ∣ s − p j ∣ ∏ i = 1 m ∣ s − z i ∣ K^*=\frac{\prod_{j=1}^n|s-p_j|}{\prod_{i=1}^m|s-z_i|} K=i=1mszij=1nspj

  • 根轨迹法相较于时域法,直接根据系统复域的值(零点极点)大致分析系统的性能, 是复域分析的一种方法(不用拉式反变换)

参考资料

【(新版!最清晰!去噪不炸耳!)自动控制原理 西北工业大学 卢京潮】

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值