§ 7 子空间的直和
子空间的直和是子空间的和的一个重要的特殊情形.
定义 9 设 V 1 , V 2 V_{1}, V_{2} V1,V2 是线性空间 V V V 的子空间, 如果和 V 1 + V 2 V_{1}+V_{2} V1+V2
中每个向量 α \alpha α 的分解式
α = α 1 + α 2 , α 1 ∈ V ˙ 1 , α 2 ∈ V 2 , \boldsymbol{\alpha}=\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}, \quad \boldsymbol{\alpha}_{1} \in \dot{V}_{1}, \boldsymbol{\alpha}_{2} \in V_{2}, α=α1+α2,α1∈V˙1,α2∈V2,
是唯一的, 这个和就称为直和, 记为 V 1 ⊕ V 2 V_{1} \oplus V_{2} V1⊕V2.
在 § 6 § 6 §6 的例 1 中子空间的和就是直和.
定理 8 和 V 1 + V 2 V_{1}+V_{2} V1+V2 是直和的充分必要条件是等式
α 1 + α ˙ 2 = 0 , α ˙ i ∈ V i , i = 1 , 2 \boldsymbol{\alpha}_{1}+\dot{\alpha}_{2}=0, \quad \dot{\alpha}_{i} \in V_{i}, \quad i=1,2 α1+α˙2=0,α˙i∈Vi,i=1,2
只有在 α i \alpha_{i} αi 全为零向量时才成立.
证明 定理的条件实际上就是:零向量的分解式是唯一的.
因而这个条件显然是必要的.下面来证这个条件的充分性.
设 α ∈ V 1 + V 2 \alpha \in V_{1}+V_{2} α∈V1+V2, 它有两个分解式
α = α 1 + α 2 = β 1 + β 2 , α i , β i ∈ V i , i = 1 , 2. \boldsymbol{\alpha}=\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}=\boldsymbol{\beta}_{1}+\boldsymbol{\beta}_{2}, \quad \boldsymbol{\alpha}_{i}, \boldsymbol{\beta}_{i} \in V_{i}, \quad i=1,2 . α=α1+α2=β1+</