OpenMMLab(1)配置文件

43 篇文章 16 订阅
34 篇文章 7 订阅

文件列表

configs 配置文件

resnet18_8xb16_cifar10

18层   8卡   b16:batch(8×16)  cifar10:数据集    mixup:数据增强   coslr:学习率衰减

_base__  网络结构models、数据集定义datasets、学习策略schedules、常规训练方式

config--_base_--models--resnet18.py    网络模型

model = dict(
    type='ImageClassifier',
    backbone=dict(
        type='ResNet',
        depth=18,
        num_stages=4,
        out_indices=(3, ),
        style='pytorch'),
    neck=dict(type='GlobalAveragePooling'),
    head=dict(
        type='LinearClsHead',
        num_classes=1000,
        in_channels=512,
        loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
        topk=(1, 5),
    ))

type:mmcls--models--classifiers--image.py--ImageClassifier(forward train)

backbone:mmcls--models--backbones--resnet.py    提特征

  • depth:层数
  • num_stages:经过多少个stage
  • out_indices:输出哪个层,可以多个层  (3--第三层  [0, 1, 2, 3])
  • style:pytorch--3×3卷积 步长s=2  caffe--1×1卷积 s=2

neck:融合策略  GlobalAveragePooling大小相等

  • head:输出
  • type:分类任务,使用FC全连接
  • num_classes:分类数量,自行修改
  • in_channels:根据neck
  • loss:损失    mmcls--models--losses中自行选择
  • topk:评估标准,top1的准确率,top5的准确率

configs--_base_--datasets--imagenet_bs32.py    数据集加载及dataload处理

# dataset settings
dataset_type = 'ImageNet'
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='RandomResizedCrop', size=224),
    dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='ImageToTensor', keys=['img']),
    dict(type='ToTensor', keys=['gt_label']),
    dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='Resize', size=(256, -1)),
    dict(type='CenterCrop', crop_size=224),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='ImageToTensor', keys=['img']),
    dict(type='Collect', keys=['img'])
]
data = dict(
    samples_per_gpu=32,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        data_prefix='data/imagenet/train',
        pipeline=train_pipeline),
    val=dict(
        type=dataset_type,
        data_prefix='data/imagenet/val',
        ann_file='data/imagenet/meta/val.txt',
        pipeline=test_pipeline),
    test=dict(
        # replace `data/val` with `data/test` for standard test
        type=dataset_type,
        data_prefix='data/imagenet/val',
        ann_file='data/imagenet/meta/val.txt',
        pipeline=test_pipeline))
evaluation = dict(interval=1, metric='accuracy')

dataset_type:mmcls--datasets--imagenet.py

img_norm_cfg:标准化,均值、标准差  x-μ/σ

train_pipeline、test_pipeline:数据预处理

type:是调用mmcls中的--datasets--pipelines中的方法

  • dict(type='LoadImageFromFile'),    读图像数据,方法在dataset_type中有
  • dict(type='RandomResizedCrop', size=224),  随机尺寸裁剪
  • dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),  翻转
  • dict(type='Normalize', **img_norm_cfg),  归一化
  • dict(type='ImageToTensor', keys=['img']),  转化为Tensor
  • dict(type='ToTensor', keys=['gt_label']),  标签转为Tensor
  • dict(type='Collect', keys=['img', 'gt_label'])  返回图像和标签

data = dict(
    samples_per_gpu=32,  单卡的batchsize,或多卡每个卡的batchsize
    workers_per_gpu=2,
    train=dict(  训练集
        type=dataset_type,
        data_prefix='data/imagenet/train',  读取路径,不指定标签,以标签文件夹为标签
        pipeline=train_pipeline),
    val=dict(  验证集
        type=dataset_type,
        data_prefix='data/imagenet/val',    
        ann_file='data/imagenet/meta/val.txt',  指定标签文件路径名,则以文件中标签
        pipeline=test_pipeline),
    test=dict(  测试集
        # replace `data/val` with `data/test` for standard test
        type=dataset_type,
        data_prefix='data/imagenet/val',
        ann_file='data/imagenet/meta/val.txt',
        pipeline=test_pipeline))
evaluation = dict(interval=1, metric='accuracy')  评估,interval经过1epoch后走验证集,metric要打印哪些指标

configs--_base_--schedules--imagenet_bs256.py    优化器和迭代次数

# optimizer
optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(policy='step', step=[30, 60, 90])
runner = dict(type='EpochBasedRunner', max_epochs=100)

optimizer:优化器  学习率 动量 学习率衰减

lr_config:迭代30、60、90次衰减

runner:最终迭代多少次

configs--_base_--default_runtime    日志

# checkpoint saving
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
    interval=100,
    hooks=[
        dict(type='TextLoggerHook'),
        # dict(type='TensorboardLoggerHook')
    ])
# yapf:enable

dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]

checkpoint_config:多少个后进行保存

log_config:保存日志,迭代多少次保存信息

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
本文将以语义分割为例,介绍如何使用OpenMMLab框架进行实战操作。 一、准备工作 1.安装OpenMMLab框架 可以按照官网提供的安装方式进行安装,也可以使用pip install mmcv-full安装mmcv-full,然后再使用pip install openmmlab安装OpenMMLab。 2.下载数据集 本文使用的是PASCAL VOC2012数据集,可以在官网上下载。 3.配置环境变量 为了方便使用,可以将数据集路径添加到环境变量中,使用时直接调用。 二、数据预处理 1.将数据集转换为COCO格式 由于OpenMMLab使用的是COCO格式的数据集,因此需要将PASCAL VOC格式的数据集转换为COCO格式。可以使用官方提供的脚本进行转换。 python tools/datasets/voc_convert.py --voc-dir /path/to/voc --json-dir /path/to/save/json 其中,--voc-dir表示PASCAL VOC格式的数据集路径,--json-dir表示将要保存COCO格式的数据集路径。 2.数据增强 使用数据增强可以使模型更具有泛化能力,常用的增强方法包括随机旋转、随机裁剪、随机翻转等。可以使用OpenMMLab提供的数据增强模块进行处理。 from mmcv import Config from mmcv.runner import obj_from_dict cfg = Config.fromfile('configs/deeplabv3_r50-d8_512x512_40k_voc12aug.py') train_pipeline = obj_from_dict(cfg.data.train.pipeline) 其中,train_pipeline为数据增强的流程,可以根据需要进行修改。 三、模型训练 使用OpenMMLab提供的训练脚本进行训练。 python tools/train.py ${CONFIG_FILE} 其中,${CONFIG_FILE}为配置文件路径,可以在configs文件夹中选择合适的配置文件进行训练。 四、模型测试 使用OpenMMLab提供的测试脚本进行测试。 python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] [--show] 其中,${CONFIG_FILE}为配置文件路径,${CHECKPOINT_FILE}为训练好的模型文件路径,${RESULT_FILE}为结果保存路径,${EVAL_METRICS}为评价指标,--show表示显示结果。 五、模型部署 使用OpenMMLab提供的导出模型脚本将模型导出为ONNX格式或TorchScript格式,以便在C++或Python中使用。 python tools/export_model.py ${CONFIG_FILE} ${CHECKPOINT_FILE} ${EXPORT_TYPE} [--out ${EXPORT_FILE}] [--input-img ${INPUT_IMG}] [--shape ${INPUT_SHAPE}] 其中,${EXPORT_TYPE}为导出模型格式,可以选择onnx或torchscript,${EXPORT_FILE}为导出模型路径,${INPUT_IMG}为输入图片路径,${INPUT_SHAPE}为输入图片大小。 六、总结 通过以上实战操作,我们可以使用OpenMMLab框架进行语义分割模型的训练、测试和部署。OpenMMLab框架提供了丰富的模型和数据增强模块,使得模型训练更加便捷。同时,OpenMMLab框架也支持模型导出为ONNX或TorchScript格式,方便在C++或Python中使用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值