第七章 Brown运动(1)
1.Brown运动的基础信息
Brown运动:令 B = ( B ( t ) , t ≥ 0 ) \boldsymbol B=(B(t),t\ge 0) B=(B(t),t≥0)是实数值随机过程,如果满足
- 初始值: B ( 0 ) = 0 B(0)=0 B(0)=0;
- 独立增量:如果 0 < t 1 < t 2 < ⋯ < t k 0<t_1<t_2<\cdots<t_k 0<t1<t2<⋯<tk,则 B ( t 1 ) , B ( t 2 ) − B ( t 1 ) , ⋯ , B ( t k ) − B ( t k − 1 ) B(t_1),B(t_2)-B(t_1),\cdots,B(t_k)-B(t_{k-1}) B(t1),B(t2)−B(t1),⋯,B(tk)−B(tk−1)相互独立;
- 平稳增量:如果 s < t s<t s<t,那么 B ( t ) − B ( s ) B(t)-B(s) B(t)−B(s)与 B ( t − s ) B(t-s) B(t−s)同分布;
- 正态性:对任何 t > 0 t>0 t>0,有 B ( t ) ∼ N ( 0 , σ 2 t ) B(t)\sim N(0,\sigma^2 t) B(t)∼N(0,σ2t)。
则称 B = ( B ( t ) , t ≥ 0 ) \boldsymbol B=(B(t),t\ge0) B=(B(t),t≥0)为参数为 σ 2 \sigma^2 σ2的Brown运动。当 σ 2 = 1 \sigma^2=1 σ2=1时称作标准Brown运动,以下均讨论标准Brown运动。
Brown运动的相关信息如下:
-
μ ( t ) = E B ( t ) = 0 , D ( B ( t ) ) = t , E B ( t ) m = t k ( 2 k − 1 ) ! ! , m = 2 k , k ∈ N + \mu(t)=EB(t)=0,D(B(t))=t,EB(t)^m=t^k(2k-1)!!,m=2k,k\in \N^+ μ(t)=EB(t)=0,D(B(t))=t,EB(t)m=tk(2k−1)!!,m=2k,k∈N+。,由 B ( t ) ∼ N ( 0 , t ) B(t)\sim N(0,t) B(t)∼N(0,t)可以直接推得。
-
r B ( s , t ) = min ( s , t ) r_B(s,t)=\min(s,t) rB(s,t)=min(s,t),由其独立增量性可以证明。
-
Brown过程是正态过程,其多维分布是
( B ( t 1 ) , B ( t 2 ) , ⋯ , B ( t n ) ) ∼ N ( 0 , Σ n ) Σ n = ( min ( t i t j ) ) n × n (B(t_1),B(t_2),\cdots,B(t_n))\sim N(\boldsymbol 0, \boldsymbol \Sigma_n)\\ \boldsymbol \Sigma_n=(\min(t_it_j))_{n\times n} (B(t1),B(t2),⋯,B(tn))∼N(0,Σn)Σn=(min(titj))n×n -
Brown的每一条样本曲线都是处处连续但无处可微的。
如果随机过程 X \boldsymbol X X的任意线性组合为正态随机变量,那么 X \boldsymbol X X是正态过程,反之也成立;如果实数值正态过程 X = ( X ( t ) , t ≥ 0 ) \boldsymbol X=(X(t),t\ge 0) X=(X(t),t≥0)满足 E ( X ( t ) ) = 0 , r X ( s , t ) = min ( s , t ) E(X(t))=0,r_X(s,t)=\min(s,t) E(X(t))=0,rX(s,t)=min(s,t),那么 X \boldsymbol X X一定是标准Brown运动,这可以用于证明随机过程是Brown过程。以下几种都是标准Brown运动的形式:
-
给定 t 0 ≥ 0 t_0\ge 0 t0≥0,定义 X ( t ) X(t) X(t)为
X ( t ) = B ( t + t 0 ) − B ( t 0 ) , t ≥ 0 ; X(t)=B(t+t_0)-B(t_0),\quad t\ge 0; X(t)=B(t+t0)−B(t0),t≥0; -
给定常数 c c c,定义 X ( t ) X(t) X(t)为
X ( t ) = 1 c B ( c t ) , t ≥ 0 ; X(t)=\frac 1{\sqrt c}B(ct),\quad t\ge0; X(t)=c1B(ct),t≥0; -
定义 X ( t ) X(t) X(t)为
X ( t ) = { t B ( t − 1 ) , t > 0 ; 0 , t = 0. X(t)=\left\{ \begin{array}l tB(t^{-1}),&t>0;\\ 0,&t=0. \end{array} \right. X(t)={tB(t−1),0,t>0;t=0.
2.与Brown运动相关的随机过程
-
Brown桥运动为 B 0 = ( B 0 ( t ) , 0 ≤ t ≤ 1 ) \boldsymbol B^0=(B^0(t),0\le t\le 1) B0=(B0(t),0≤t≤1),其中
B 0 ( t ) = B ( t ) − t B ( 1 ) , 0 ≤ t ≤ 1. B^0(t)=B(t)-tB(1),\quad 0\le t\le 1. B0(t)=B(t)−tB(1),0≤t≤1.
显然有 E ( B 0 ( t ) ) = 0 , D ( B 0 ( t ) ) = t ( 1 − t ) E(B^0(t))=0,D(B^0(t))=t(1-t) E(B0(t))=0,D(B0(t))=t(1−t),且 E ( B 0 ( s ) B 0 ( t ) ) = min ( s , t ) ( 1 − max ( s , t ) ) E(B^0(s)B^0(t))=\min(s,t)(1-\max(s,t)) E(B0(s)B0(t))=min(s,t)(1−max(s,t))。注意到 B 0 ( 0 ) = B 0 ( 1 ) = 0 B^0(0)=B^0(1)=0 B0(0)=B0(1)=0,因此Brown桥运动又称为绑在0,1上的Brown运动。
-
反射Brown运动为 X = ( X ( t ) , t ≥ 0 ) \boldsymbol X=(X(t),t\ge 0) X=(X(t),t≥0),其中
X ( t ) = ∣ B ( t ) ∣ , t ≥ 0. X(t)=|B(t)|,\quad t\ge 0. X(t)=∣B(t)∣,t≥0.
这里 X ( t ) X(t) X(t)仅取非负实数值,不再是正态过程了,可以计算 X ( t ) X(t) X(t)的概率密度函数与相关数字特征为
p ( x ; t ) = 2 π t e − x 2 2 t I ( x ≥ 0 ) ; E ( X ( t ) ) = 2 π t ∫ 0 ∞ x e − x 2 2 t d x = 2 t π ∫ 0 ∞ e − x d x = 2 t π . D ( X ( t ) ) = E ( X ( t ) 2 ) − [ E X ( t ) ] 2 = E ( B ( t ) 2 ) − 2 t π = π − 2 π t . p(x;t)=\sqrt{\frac{2}{\pi t}}e^{-\frac{x^2}{2t}}I(x\ge0);\\ \begin{aligned} E(X(t))=&\sqrt{\frac{2}{\pi t}}\int_0^\infty xe^{-\frac{x^2}{2t}}dx\\ =&\sqrt{\frac{2t}{\pi}}\int_0^\infty e^{-x}dx\\ =&\sqrt{\frac{2t}{\pi}}.\\ \\ D(X(t))=&E(X(t)^2)-[EX(t)]^2\\ =&E(B(t)^2)-\frac{2t}{\pi}\\ =&\frac{\pi-2}{\pi}t. \end{aligned} p(x;t)=πt2e−2tx2I(x≥0);E(X(t))===D(X(t))===πt2∫0∞xe−2tx2dxπ2t∫0∞e−xdxπ2t.E(X(t)2)−[EX(t)]2E(B(t)2)−π2tππ−2t. -
几何Brown运动为 X = ( X ( t ) , t ≥ 0 ) \boldsymbol X=(X(t),t\ge0) X=(X(t),t≥0),其中
X ( t ) = e α t + β B ( t ) , t ≥ 0 , β > 0. X(t)=e^{\alpha t+\beta B(t)},\quad t\ge 0,\beta>0. X(t)=eαt+βB(t),t≥0,β>0.
这里 X ( t ) X(t) X(t)仅取非负实数值,不再是正态过程,可以计算 X ( t ) X(t) X(t)的概率密度函数和数字特征为
F ( x ; t ) = P ( X ( t ) ≤ x ) = P ( B ( t ) ≤ ln x − α t β ) = Φ ( ln x − α t β t ) ; p ( x ; t ) = F ′ ( x ; t ) = 1 2 π e − ( ln x − α t ) 2 2 β t t ⋅ 1 x β t = 1 β x 2 π t e − ( ln x − α t ) 2 / 2 β 2 t I ( x > 0 ) . E X ( t ) = E e α t + β B ( t ) = e α t E e β B ( t ) = e α t + 1 2 β 2 t ; E ( X ( t ) 2 ) = E e 2 α t + 2 β B ( t ) = e 2 α t E e 2 β B ( t ) = e 2 α t + 2 β 2 t ; \begin{aligned} F(x;t)=&P(X(t)\le x)\\ =&P(B(t)\le\frac{\ln x-\alpha t}{\beta})\\ =&\Phi\left(\frac{\ln x-\alpha t}{\beta \sqrt t}\right);\\ \quad\\ p(x;t)=&F'(x;t)\\ =&\frac{1}{\sqrt {2\pi}}e^{-\frac{(\ln x-\alpha t)^2}{2\beta^tt}}\cdot\frac{1}{x\beta \sqrt t}\\ =&\frac{1}{\beta x\sqrt {2\pi t}}e^{-(\ln x-\alpha t)^2/2\beta^2t}I(x>0).\\ \quad \\ EX(t)=&Ee^{\alpha t+\beta B(t)}\\ =&e^{\alpha t}Ee^{\beta B(t)}\\ =&e^{\alpha t+\frac12\beta^2t};\\ \quad \\ E(X(t)^2)=&Ee^{2\alpha t+2\beta B(t)}\\ =&e^{2\alpha t}Ee^{2\beta B(t)}\\ =&e^{2\alpha t+2\beta^2 t}; \end{aligned} F(x;t)===p(x;t)===EX(t)===E(X(t)2)===P(X(t)≤x)P(B(t)≤βlnx−αt)Φ(βtlnx−αt);F′(x;t)2π1e−2βtt(lnx−αt)2⋅xβt1βx2πt1e−(lnx−αt)2/2β2tI(x>0).Eeαt+βB(t)eαtEeβB(t)eαt+21β2t;Ee2αt+2βB(t)e2αtEe2βB(t)e2αt+2β2t;
这里用到正态分布的矩母函数:若 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) X∼N(μ,σ2),则 E e t X = e μ t + 1 2 σ 2 t 2 Ee^{tX}=e^{\mu t+\frac12\sigma^2t^2} EetX=eμt+21σ2t2。 -
积分过程。对于Brown运动而言,几乎每条样本曲线都连续,即存在一个零概率时间 Ω 0 \Omega_0 Ω0,使得对于每一个 ω ∈ Ω ∖ Ω 0 \omega\in \Omega\setminus\Omega_0 ω∈Ω∖Ω0, B ( t , ω ) B(t,\omega) B(t,ω)作为 t t t的函数在 [ 0 , + ∞ ) [0,+\infty) [0,+∞)都连续,于是定义
X ( ω , t ) = ∫ 0 t B ( ω , s ) d s , ω ∈ Ω ∖ Ω 0 . X(\omega,t)=\int_0^t B(\omega,s)ds, \quad\omega\in \Omega\setminus\Omega_0. X(ω,t)=∫0tB(ω,s)ds,ω∈Ω∖Ω0.
的积分是Riemann积分,它存在并有限。记
X ( t ) = ∫ 0 t B ( s ) d s , t ≥ 0 , X(t)=\int_0^t B(s)ds,\quad t\ge0, X(t)=∫0tB(s)ds,t≥0,
称 X = ( X ( t ) , t ≥ 0 ) \boldsymbol X=(X(t),t\ge0) X=(X(t),t≥0)为积分过程,它是一个正态过程,并且
E X ( t ) = ∫ 0 t E B ( s ) d s = 0 , t ≥ 0 , r X ( s , t ) = E ( X ( s ) X ( t ) ) = ∫ 0 s ∫ 0 t E ( B ( u ) B ( v ) ) d u d v = ∫ 0 s ∫ 0 t min ( u , v ) d u d v = ∫ 0 s ∫ u s u d v d u + ∫ 0 s ∫ 0 u v d v d u + ∫ s t ∫ 0 s v d u d v = s 3 6 + s 3 6 + s ( t 2 − s 2 ) 2 = s t 2 2 − s 3 6 , s ≤ t \begin{aligned} EX(t)=&\int_0^t EB(s)ds=0,\quad t\ge0,\\ \quad\\ r_\boldsymbol X(s,t)=&E(X(s)X(t))\\ =&\int_0^s \int_0^t E(B(u)B(v))dudv\\ =&\int_0^s \int_0^ t \min(u,v) dudv\\ =&\int_0^s\int_u^sudvdu+\int_0^s\int_0^u vdvdu+\int_s^t\int_0^s v dudv\\ =&\frac{s^3}6+\frac{s^3}{6}+\frac{s(t^2-s^2)}{2}\\ =&\frac{st^2}{2}-\frac{s^3}{6},\quad s\le t \end{aligned} EX(t)=rX(s,t)======∫0tEB(s)ds=0,t≥0,E(X(s)X(t))∫0s∫0tE(B(u)B(v))dudv∫0s∫0tmin(u,v)dudv∫0s∫usudvdu+∫0s∫0uvdvdu+∫st∫0svdudv6s3+6s3+2s(t2−s2)2st2−6s3,s≤t
3.最大值与首中时
最大值:对于任意给定的 t t t,令 M t = max n ≤ s ≤ t B ( s ) M_t=\max\limits_{n\le s\le t}B(s) Mt=n≤s≤tmaxB(s),就称 M t M_t Mt是Brown在 [ 0 , t ] [0,t] [0,t]内的最大值。
首中时:对于任意给定的非零实数 a a a,令 T a = inf { t ≥ 0 : B ( t ) = a } a.s. T_a=\inf\{t\ge0:B(t)=a\}\text{ a.s.} Ta=inf{t≥0:B(t)=a} a.s.,就称 T a T_a Ta是 a a a的首中时。
- 反射原理:固定实数
a
a
a,令
B ^ ( t ) = { B ( t ) , t < T a ; 2 a − B ( t ) , t ≥ T a . \hat B(t)=\left\{ \begin{array}l B(t), &t<T_a;\\ 2a-B(t),&t\ge T_a. \end{array} \right. B^(t)={B(t),2a−B(t),t<Ta;t≥Ta.
则 B ^ ( t ) \hat B(t) B^(t)也是一个Brown运动。
对于任意给定的 t > 0 t>0 t>0,有 M t = d ∣ B ( t ) ∣ M_t\stackrel d= |B(t)| Mt=d∣B(t)∣。
P
(
M
t
>
x
)
=
P
(
M
t
>
x
,
B
(
t
)
>
x
)
+
P
(
M
t
>
x
,
B
(
t
)
<
x
)
P(M_t>x)=P(M_t>x, B(t)>x)+P(M_t>x,B(t)<x)
P(Mt>x)=P(Mt>x,B(t)>x)+P(Mt>x,B(t)<x)
这里
P
(
M
t
>
x
,
B
(
t
)
>
x
)
=
P
(
B
(
t
)
>
x
)
P(M_t>x,B(t)>x)=P(B(t)>x)
P(Mt>x,B(t)>x)=P(B(t)>x)是显然的。
要证明 P ( M t > x , B ( t ) < x ) = P ( M t > x , B ( t ) > x ) P(M_t>x,B(t)<x)=P(M_t>x,B(t)>x) P(Mt>x,B(t)<x)=P(Mt>x,B(t)>x),如果 M t > x M_t>x Mt>x,则必定存在一个时刻 s ∈ ( 0 , t ) s\in(0,t) s∈(0,t)使得 B ( s ) = x B(s)=x B(s)=x,即 T x < t T_x<t Tx<t且 B ( T x ) = x B(T_x)=x B(Tx)=x。将坐标原点平移到此处,由于 X ( t ) = B ( t + T x ) − B ( T x ) X(t)=B(t+T_x)-B(T_x) X(t)=B(t+Tx)−B(Tx)是一个Brown运动,所以此时 P ( B ( t ) − x > 0 ) = P ( B ( t ) − x < 0 ) P(B(t)-x>0)=P(B(t)-x<0) P(B(t)−x>0)=P(B(t)−x<0),得证。
对于首中时
T
a
T_a
Ta,用
f
a
(
t
)
f_a(t)
fa(t)表示 它的密度函数,则有
f
a
(
t
)
=
∣
a
∣
2
π
t
3
/
2
e
−
a
2
/
2
t
I
(
t
>
0
)
.
f_a(t)=\frac{|a|}{\sqrt {2\pi}t^{3/2}}e^{-a^2/2t}I(t>0).
fa(t)=2πt3/2∣a∣e−a2/2tI(t>0).
不妨设
a
>
0
a>0
a>0,对任意
t
>
0
t>0
t>0有
P
(
T
a
≤
t
)
=
P
(
M
t
≥
a
)
=
2
π
∫
a
∞
1
t
e
−
x
2
/
2
t
d
x
f
a
(
t
)
=
d
P
(
T
a
≤
t
)
d
t
=
−
1
2
π
∫
a
∞
1
t
3
/
2
e
−
x
2
/
2
t
d
x
+
1
2
π
∫
a
∞
x
2
t
5
/
2
e
−
x
2
/
2
t
d
x
∫
a
∞
1
t
3
/
2
e
−
x
2
/
2
t
d
x
=
−
a
t
3
/
2
e
−
a
2
/
2
t
+
∫
a
∞
x
2
t
5
/
2
e
−
x
2
/
2
t
d
x
f
a
(
t
)
=
a
2
π
t
3
/
2
e
−
a
2
/
2
t
P(T_a\le t)=P(M_t\ge a)=\sqrt\frac{2}{\pi}\int_a^\infty \frac{1}{\sqrt t}e^{-x^2/2t}dx\\ \begin{aligned} &f_a(t)\\=&\frac{dP(T_a\le t)}{dt}\\ =&-\frac{1}{\sqrt {2\pi}}\int_a^\infty \frac1{t^{3/2}}e^{-x^2/2t}dx+\frac{1}{\sqrt{2\pi}}\int_a^\infty\frac{x^2}{t^{5/2}}e^{-x^2/2t}dx\\ \\ &\int_a^\infty \frac{1}{t^{3/2}}e^{-x^2/2t}dx\\=&-\frac a{t^{3/2}}e^{-a^2/2t}+\int_a^\infty \frac{x^2}{t^{5/2}}e^{-x^2/2t}dx\\ \quad\\ f_a(t)=&\frac{a}{\sqrt{2\pi}t^{3/2}}e^{-a^2/2t} \end{aligned}
P(Ta≤t)=P(Mt≥a)=π2∫a∞t1e−x2/2tdx===fa(t)=fa(t)dtdP(Ta≤t)−2π1∫a∞t3/21e−x2/2tdx+2π1∫a∞t5/2x2e−x2/2tdx∫a∞t3/21e−x2/2tdx−t3/2ae−a2/2t+∫a∞t5/2x2e−x2/2tdx2πt3/2ae−a2/2t
对
a
<
0
a<0
a<0时类似证明,得到
f
a
(
t
)
f_a(t)
fa(t)的密度函数。
由此可以验证:
P
(
T
a
<
∞
)
=
lim
t
→
∞
P
(
T
a
≤
t
)
=
lim
t
→
∞
P
(
M
a
≥
a
)
=
lim
n
→
∞
2
π
∫
a
∞
1
t
e
−
x
2
/
2
t
d
x
=
lim
n
→
∞
2
π
∫
a
∞
e
−
(
x
/
t
)
2
2
d
(
x
/
t
)
=
lim
n
→
∞
2
π
∫
a
/
t
∞
e
−
m
2
/
2
d
m
=
2
π
∫
0
∞
e
−
m
2
/
2
d
m
=
1
E
T
a
=
∫
0
∞
t
f
a
(
t
)
d
t
=
∣
a
∣
2
π
∫
0
∞
1
t
e
−
a
2
/
2
t
d
t
=
∞
\begin{aligned} P(T_a<\infty)=&\lim\limits_{t\to \infty }P(T_a\le t)\\ =&\lim_{t\to \infty }P(M_a\ge a)\\ =&\lim_{n\to \infty }\sqrt{\frac 2\pi}\int_a^\infty \frac{1}{\sqrt t}e^{-x^2/2t}dx\\ =&\lim_{n\to \infty }\sqrt {\frac2\pi}\int_a^\infty e^{-\frac{(x/\sqrt t)^2}{2}}d(x/\sqrt t)\\ =&\lim_{n\to \infty}\sqrt {\frac 2\pi}\int_{a/\sqrt t}^\infty e^{-m^2/2}dm\\ =&\sqrt {\frac2\pi}\int_0^\infty e^{-m^2/2}dm=1\\ \\ ET_a=&\int_0^\infty tf_a(t)dt\\ =&\frac{|a|}{\sqrt {2\pi}}\int_0^\infty \frac{1}{\sqrt t}e^{-a^2/2t}dt\\ =&\infty \end{aligned}
P(Ta<∞)======ETa===t→∞limP(Ta≤t)t→∞limP(Ma≥a)n→∞limπ2∫a∞t1e−x2/2tdxn→∞limπ2∫a∞e−2(x/t)2d(x/t)n→∞limπ2∫a/t∞e−m2/2dmπ2∫0∞e−m2/2dm=1∫0∞tfa(t)dt2π∣a∣∫0∞t1e−a2/2tdt∞
也就是 ∀ a ∈ R \forall a\in \R ∀a∈R,无论 a a a离原点多远,Brown运动都会在有限时间内到达;但无论 a a a离原点多近,Brown到达 a a a的平均时间都为 ∞ \infty ∞。
令
a
<
0
<
b
a<0<b
a<0<b,那么
P
(
T
a
<
T
b
)
=
b
b
−
a
,
P
(
T
a
>
T
b
)
=
∣
a
∣
b
−
a
P(T_a<T_b)=\frac b{b-a},P(T_a>T_b)=\frac{|a|}{b-a}
P(Ta<Tb)=b−ab,P(Ta>Tb)=b−a∣a∣