第二章 随机变量与分布函数(1)
1.随机变量
随机变量的定义比较抽象,要理解这个定义,可以先了解随机变量的引入背景。对于一个随机试验,随机事件有时表现为与数字无关,如抽球游戏中的“抽红球”、“抽黄球”、“抽白球”等,但还有一些随机事件表现为与数字相关,比如某个街道10分钟“开来1辆车”、“开来2辆车”等离散指标,甚至可以是连续指标,比如测量某物品长度的结果。如果事件表现得和数字相关,自然会对其更深层次的数字特征感兴趣,因此我们可以用某个变量单独表示这个事件中的数,以便研究它的其他性质。随机变量就是对事件中“数”的表征,而我们将其抽象出来以后,可以脱离事件直接研究随机变量。
现在给出随机变量的严格定义:设
ξ
(
ω
)
\xi(\omega)
ξ(ω)是定义在概率空间
{
Ω
,
F
,
P
}
\{\Omega ,\mathscr F,P\}
{Ω,F,P}上的单值实函数,且对于
R
\R
R上的任一Borel集
B
B
B,有
ξ
−
1
(
B
)
=
{
ω
:
ξ
(
ω
)
∈
B
}
∈
F
.
\xi^{-1}(B)=\{\omega:\xi(\omega)\in B\}\in \mathscr F.
ξ−1(B)={ω:ξ(ω)∈B}∈F.
就称
ξ
(
ω
)
\xi(\omega)
ξ(ω)为随机变量,而称
P
(
ξ
(
ω
)
∈
B
)
,
B
∈
B
P(\xi(\omega)\in B),B\in \mathcal B
P(ξ(ω)∈B),B∈B为随机变量
ξ
(
ω
)
\xi(\omega)
ξ(ω)的概率分布。
要理解这个定义有一定难度,现在将每一句话拆分开,单独看随机变量的定义。
首先, ω \omega ω指的是样本空间中的样本点,而 ξ ( ω ) \xi(\omega) ξ(ω)是单值实函数,指的是对于每一个发生的事件,都可以通过随机变量将其描述为一个数。例如掷骰子中有6个样本点,定义 ω i \omega_i ωi为掷出 i i i点,则 ξ ( ω ) \xi(\omega) ξ(ω)作为函数,就将每一个样本点映射到一个实数上,比如 ξ ( ω i ) = i \xi(\omega_i)=i ξ(ωi)=i,这个映射,指的是骰子掷出多少点,随机变量 ξ \xi ξ的取值就是多少。这就是说,随机变量首先是将随机事件映射到“数”上。
然后,回顾Borel集与Borel域 B \mathcal B B的定义 ,Borel集是由一切左开右闭集合通过可数次并交逆得到的集合, B \mathcal B B就是Borel集的全体。定义中 ξ − 1 ( B ) = { ω : ξ ( ω ) ∈ B } \xi^{-1}(B)=\{\omega :\xi(\omega)\in B\} ξ−1(B)={ω:ξ(ω)∈B}指的,其实就是 ξ { ω : ξ ( ω ) ∈ B } = B \xi\{\omega:\xi(\omega)\in B\}=B ξ{ω:ξ(ω)∈B}=B,这可以理解为,对一切满足 ξ ( ω ) ∈ B \xi(\omega)\in B ξ(ω)∈B的样本点 ω \omega ω,对其中的每一个样本点 ω \omega ω作映射得到实数 ξ ( ω ) \xi(\omega) ξ(ω),这些实数构成的是Borel集 B B B。要求是,这一切样本点组成的集合 { ω : ξ ( ω ) ∈ B } \{\omega:\xi(\omega)\in B\} {ω:ξ(ω)∈B},都要是事件域中的事件,也就是说,在实数轴上任取一个Borel集 B B B,会有一系列样本点通过 ξ \xi ξ被映射到 B B B里,这些样本点构成的集合一定要是事件。还是以掷骰子为例,如果 B = [ 2.5 , 4.5 ] B=[2.5,4.5] B=[2.5,4.5],则能够被映射到的样本点有 ω 3 , ω 4 \omega_3,\omega_4 ω3,ω4,这两个样本点构成的集合 { ω 3 , ω 4 } \{\omega_3,\omega_4\} {ω3,ω4}是一个事件:掷到3、4点。任一Borel集都要能够对应于一个这样的事件,这样的 ξ \xi ξ才是随机变量,否则研究的东西都不在事件域内,随机变量就失去了意义。
以上概率理解了对了解随机变量有一定好处,但不能理解也不会造成太大负面影响。
既然这样,要刻画一个随机变量的概率分布,就要对事件域中的所有事件求概率,这稍嫌麻烦,但在很多情况下,只要对一系列特殊的Borel集求概率即可,最典型的是离散型随机变量与连续型随机变量。
2.分布函数
在介绍离散随机变量与连续随机变量前,先定义一种能够刻画所有类型随机变量的方式,即分布函数。由于对于随机变量而言,每一个Borel集都对应着一个概率值,那么作为这些Borel集中特殊的一种左开右闭区间,自然也存在着概率,即不管
x
x
x取什么值,
P
(
ξ
≤
x
)
P(\xi \le x)
P(ξ≤x)值总是存在的。这样每取一个
R
\R
R上的
x
x
x,就唯一对应一个值
P
(
ξ
≤
x
)
P(\xi \le x)
P(ξ≤x),因此满足函数的定义,定义
ξ
\xi
ξ的分布函数为
F
ξ
(
x
)
=
P
(
ξ
≤
x
)
,
x
∈
R
.
F_\xi(x)=P(\xi\le x),\quad x\in \R.
Fξ(x)=P(ξ≤x),x∈R.
一般来说,书写分布函数时会用下标写出这个分布函数对应于哪一个随机变量,但如果很明确了,也可以省略不写。有了分布函数以后,就可以计算任一Borel集的概率。
P
(
ξ
≤
b
)
=
F
(
b
)
,
F
(
ξ
>
a
)
=
1
−
F
(
a
)
;
P
(
a
<
ξ
≤
b
)
=
F
(
b
)
−
F
(
a
)
;
P
(
ξ
<
b
)
=
F
(
b
−
0
)
.
P(\xi \le b)=F(b),F(\xi > a)=1-F(a);\\ P(a<\xi \le b)=F(b)-F(a);\\ P(\xi <b)=F(b-0).
P(ξ≤b)=F(b),F(ξ>a)=1−F(a);P(a<ξ≤b)=F(b)−F(a);P(ξ<b)=F(b−0).
除此以外,分布函数还具有以下性质:
- 单调性:若 a < b a<b a<b,则 F ( a ) ≤ F ( b ) F(a)\le F(b) F(a)≤F(b)。这是因为 F ( b ) − F ( a ) = P ( a < ξ ≤ b ) ≥ 0 F(b)-F(a)=P(a<\xi\le b)\ge 0 F(b)−F(a)=P(a<ξ≤b)≥0。
- 有界性: 0 ≤ F ( x ) ≤ 1 0\le F(x)\le 1 0≤F(x)≤1,且 lim x → − ∞ F ( x ) = 0 , lim x → ∞ F ( x ) = 1 \lim\limits_{x\to -\infty}F(x)=0,\lim\limits_{x\to \infty }F(x)=1 x→−∞limF(x)=0,x→∞limF(x)=1。这是因为概率的有界性与单调有界定理保证的。
- 右连续性: F ( x + 0 ) = F ( x ) F(x+0)=F(x) F(x+0)=F(x)。只需证明 lim n → ∞ F ( x + 1 n ) = F ( x ) \lim\limits_{n\to \infty}F(x+\frac1n)=F(x) n→∞limF(x+n1)=F(x),运用概率测度的连续性即可。一般来说分布函数的连续性与其定义方式有关。
具有以上三个性质的函数,一定可以作为某随机变量的分布函数。