函数极限与数列极限桥梁:Heine定理
先考虑数列极限与函数极限的 ε − N \varepsilon-N ε−N定义:
- 数列极限:对于数列 { a n } \{a_n\} {an}与实数 a a a,如果 ∀ ε > 0 , ∃ N ( ε ) , ∀ n ( n > N ) , ∣ a n − a ∣ < ε \forall \varepsilon >0,\exist N(\varepsilon),\forall n(n>N),|a_n-a|<\varepsilon ∀ε>0,∃N(ε),∀n(n>N),∣an−a∣<ε,则称 lim n → ∞ a n = a \lim\limits_{n\to \infty}a_n=a n→∞liman=a。
- 函数极限:对于函数 f ( x ) f(x) f(x)与实数 A A A,如果在 x 0 x_0 x0的某个去心邻域 U ∘ ( x 0 , Δ ) U^\circ(x_0,\Delta) U∘(x0,Δ)内有定义,且 ∀ ε , ∃ δ ( ε ) , ∀ x ∈ ( x 0 − ε , x 0 + ε ) ∖ { x 0 } , ∣ f ( x ) − A ∣ < ε \forall \varepsilon,\exist\delta(\varepsilon),\forall x\in (x_0-\varepsilon,x_0+\varepsilon)\setminus\{x_0\},|f(x)-A|<\varepsilon ∀ε,∃δ(ε),∀x∈(x0−ε,x0+ε)∖{x0},∣f(x)−A∣<ε,则称 lim x → x 0 f ( x ) = A \lim\limits_{x\to x_0}f(x)=A x→x0limf(x)=A。特别当 x 0 = + ∞ x_0=+\infty x0=+∞时,其去心邻域代表 x > M x>M x>M;当 x 0 = − ∞ x_0=-\infty x0=−∞时,其去心邻域代表 x < L x<L x<L。
对比可以发现,数列极限与函数极限的主要区别除了连续与间断,还有,数列极限一定是一个趋向无限的极限,而函数极限则可以趋向于某一点,也可以趋向无限(这里不讨论双侧无限,可以看作是两个单词无限极限相同时的特殊情形)。
Heine定理提供了联系起函数极限与数列极限的桥梁。
Heine定理: lim x → x 0 f ( x ) = A \lim\limits_{x\to x_0}f(x)=A x→x0limf(x)=A的充分必要条件是,对于任何满足条件 lim n → ∞ x n = x 0 \lim\limits_{n\to \infty}x_n=x_0 n→∞limxn=x0且 x n ≠ x 0 x_n\ne x_0 xn=x0的数列 { x n } \{x_n\} {xn},相应的函数值数列 { f ( x n ) } \{f(x_n)\} {f(xn)}成立 lim n → ∞ f ( x n ) = A \lim\limits_{n\to \infty}f(x_n)=A n→∞limf(xn)=A。
证明:
先证明必要性即 lim x → x 0 f ( x ) = A ⇒ lim n → ∞ f ( x n ) = A \lim\limits_{x\to x_0}f(x)=A\Rightarrow \lim\limits_{n\to \infty}f(x_n)=A x→x0limf(x)=A⇒n→∞limf(xn)=A。
由 lim x → x 0 f ( x ) = A \lim\limits_{x\to x_0}f(x)=A x→x0limf(x)=A可知,对于给定的 ε \varepsilon ε,存在一个 δ ( ε ) \delta(\varepsilon) δ(ε)使得对于 0 < ∣ x − x 0 ∣ < δ ( ε ) 0<|x-x_0|<\delta(\varepsilon) 0<∣x−x0∣<δ(ε)的 x x x,都有 ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon ∣f(x)−A∣<ε。
对于任何满足 x n → x 0 x_n\to x_0 xn→x0的数列,给定这个 δ ( ε ) \delta(\varepsilon) δ(ε),必定存在一个 N ( ε ) N(\varepsilon) N(ε)使得 ∀ n > N ( ε ) \forall n>N(\varepsilon) ∀n>N(ε),有 ∣ x n − x 0 ∣ < δ ( ε ) |x_n-x_0|<\delta(\varepsilon) ∣xn−x0∣<δ(ε)。
又因为 x n ≠ n 0 x_n\ne n_0 xn=n0,所以 0 < ∣ x n − x 0 ∣ < δ ( ε ) 0<|x_n-x_0|<\delta(\varepsilon) 0<∣xn−x0∣<δ(ε),这就说明 ∀ n > N ( ε ) , ∣ f ( x n ) − A ∣ < ε \forall n>N(\varepsilon),|f(x_n)-A|<\varepsilon ∀n>N(ε),∣f(xn)−A∣<ε。这就证明了必要性。
再证明充分性即 lim n → ∞ f ( x n ) = A ⇒ lim x → x 0 f ( x ) = A \lim\limits_{n\to \infty}f(x_n)=A\Rightarrow \lim\limits_{x\to x_0}f(x)=A n→∞limf(xn)=A⇒x→x0limf(x)=A,用反证法,如果这个命题错误,即对于所有趋向于 x 0 x_0 x0但不等于 x 0 x_0 x0的数列 { x n } \{x_n\} {xn}有 f ( x n ) f(x_n) f(xn)极限为 A A A,但至少存在一个函数 f ( x ) f(x) f(x)使得 lim x → x 0 f ( x ) ≠ A \lim\limits_{x\to x_0}f(x)\ne A x→x0limf(x)=A。
那我们不妨就取这样一个极限不为 A A A的函数 f ( x ) f(x) f(x), lim x → x 0 f ( x ) ≠ A \lim\limits_{x\to x_0}f(x)\ne A x→x0limf(x)=A。由函数极限定义,如果 f ( x ) f(x) f(x)在 x 0 x_0 x0处极限不为 A A A,那么 ∃ ε 0 , ∀ δ > 0 , ∃ x 0 ′ ∈ U ∘ ( x 0 , δ ) , ∣ f ( x 0 ′ ) − A ∣ > ε 0 \exist\varepsilon_0,\forall \delta>0,\exist x_0'\in U^{\circ}(x_0,\delta),|f(x_0')-A|>\varepsilon_0 ∃ε0,∀δ>0,∃x0′∈U∘(x0,δ),∣f(x0′)−A∣>ε0。
根据此性质,我们可以取定一个
ε
0
\varepsilon_0
ε0,由于对任意
δ
\delta
δ都有此性质成立,可以取一列
{
δ
n
}
\{\delta_n\}
{δn}使得
δ
n
→
0
\delta_n\to 0
δn→0,比如
δ
n
=
1
n
\delta_n=\dfrac 1n
δn=n1。对每一个
δ
n
\delta_n
δn,都自然地存在一个
x
0
′
=
x
n
x_0'=x_n
x0′=xn满足
0
<
∣
x
n
−
x
0
∣
<
1
n
,
∣
f
(
x
n
)
−
A
∣
>
ε
0
.
0<|x_n-x_0|<\frac 1n,\quad |f(x_n)-A|>\varepsilon_0.
0<∣xn−x0∣<n1,∣f(xn)−A∣>ε0.
如此可以构造出一列数列
{
x
n
}
\{x_n\}
{xn},由于
0
<
∣
x
n
−
x
0
∣
<
1
n
→
0
0<|x_n-x_0|<\frac 1n\to 0
0<∣xn−x0∣<n1→0,所以
x
n
→
x
0
x_n\to x_0
xn→x0但
x
n
≠
x
0
,
∀
n
x_n\ne x_0,\forall n
xn=x0,∀n。同时,因为
∣
f
(
x
n
)
−
A
∣
>
ε
0
|f(x_n)-A|>\varepsilon_0
∣f(xn)−A∣>ε0,所以
f
(
x
n
)
f(x_n)
f(xn)不以
A
A
A为极限。
以上论证过程,说明任意一个极限不为 A A A的函数,都一定存在一个趋向于 x 0 x_0 x0但不等于 x 0 x_0 x0的数列 { x n } \{x_n\} {xn},满足 f ( x n ) ↛ A f(x_n)\nrightarrow A f(xn)↛A。那么,如果所有趋向于 x 0 x_0 x0但不等于 x 0 x_0 x0的数列 { x n } \{x_n\} {xn}都有 f ( x n ) → A f(x_n)\to A f(xn)→A,那么一定就有 f ( x ) → A f(x)\to A f(x)→A。充分性得证。
关于Heine定理,需要注意的一点是,趋向于 x 0 x_0 x0的数列 { x n } \{x_n\} {xn}必须满足 x n ≠ x 0 x_n\ne x_0 xn=x0这个条件,否则定理内容是不成立的。比如符号函数 s g n ( x ) {\rm sgn}(x) sgn(x)的绝对值 g ( x ) = ∣ s g n ( x ) ∣ g(x)=|{\rm sgn}(x)| g(x)=∣sgn(x)∣,满足 lim x → 0 g ( x ) = 1 \lim\limits_{x\to 0}g(x)=1 x→0limg(x)=1,但是其收敛于 0 0 0的数列 { x n } , x n = 0 \{x_n\},x_n=0 {xn},xn=0有 lim n → ∞ f ( x n ) = 0 \lim\limits_{n\to \infty}f(x_n)=0 n→∞limf(xn)=0,其原因就是因为不满足 x n ≠ x 0 = 0 x_n\ne x_0=0 xn=x0=0的条件。
Heine定理常用于证明函数极限不存在,最典型的例子就是
f
(
x
)
=
sin
1
x
f(x)=\sin \dfrac 1x
f(x)=sinx1,构造两个子列:
x
n
(
1
)
=
1
n
π
,
x
n
(
2
)
=
1
2
n
π
+
π
/
2
,
x_n^{(1)}=\frac {1}{n\pi},\quad x_n^{(2)}=\frac{1}{2n\pi+\pi/2},
xn(1)=nπ1,xn(2)=2nπ+π/21,
由
f
(
x
n
(
1
)
)
→
0
,
f
(
x
n
(
2
)
)
→
1
f(x_n^{(1)})\to 0,f(x_n^{(2)})\to 1
f(xn(1))→0,f(xn(2))→1就说明
f
(
x
)
f(x)
f(x)在
x
=
0
x=0
x=0处不存在极限。
如果我们不关心函数收敛到的值,只从函数自身的情况出发判断函数极限存在性,那么Heine定理可以改成以下形式: lim x → x 0 f ( x ) \lim\limits_{x\to x_0}f(x) x→x0limf(x)存在的充要条件是,对于任意满足条件 lim x → ∞ x n = x 0 \lim\limits_{x\to \infty}x_n=x_0 x→∞limxn=x0且 x n ≠ x 0 x_n\ne x_0 xn=x0的数列 { x n } \{x_n\} {xn},相应的函数值数列 { f ( x n ) } \{f(x_n)\} {f(xn)}收敛。
这个定理的充分性,只要注意到当 f ( x ) f(x) f(x)不收敛时,一定存在两个不同极限的数列 { x n ( 1 ) } \{x_n^{(1)}\} {xn(1)}和 { x n ( 2 ) } \{x_n^{(2)}\} {xn(2)},将它们交错构成一个新数列,这个新数列的函数值列不收敛。
由此可以推出函数极限的Cauchy收敛准则:函数极限 lim x → + ∞ f ( x ) \lim\limits_{x\to +\infty}f(x) x→+∞limf(x)存在且有限的充要条件是,对于任何给定的 ε > 0 \varepsilon>0 ε>0,存在 X > 0 X>0 X>0,使得对于一切 x ′ > X , x ′ ′ > X x'>X,x''>X x′>X,x′′>X,有 ∣ f ( x ′ ) − f ( x ′ ′ ) ∣ < ε |f(x')-f(x'')|<\varepsilon ∣f(x′)−f(x′′)∣<ε。
由于Heine定理联系了离散态的数列极限和连续态的函数极限,因此求在无限远处的函数极限,常常可以用“夹逼”的方法,用前后两个自然数的极限夹逼得到连续函数在无限处的极限。