函数极限与数列极限桥梁:Heine定理

函数极限与数列极限桥梁:Heine定理

先考虑数列极限与函数极限的 ε − N \varepsilon-N εN定义:

  • 数列极限:对于数列 { a n } \{a_n\} {an}与实数 a a a,如果 ∀ ε > 0 , ∃ N ( ε ) , ∀ n ( n > N ) , ∣ a n − a ∣ < ε \forall \varepsilon >0,\exist N(\varepsilon),\forall n(n>N),|a_n-a|<\varepsilon ε>0,N(ε),n(n>N),ana<ε,则称 lim ⁡ n → ∞ a n = a \lim\limits_{n\to \infty}a_n=a nliman=a
  • 函数极限:对于函数 f ( x ) f(x) f(x)与实数 A A A,如果在 x 0 x_0 x0的某个去心邻域 U ∘ ( x 0 , Δ ) U^\circ(x_0,\Delta) U(x0,Δ)内有定义,且 ∀ ε , ∃ δ ( ε ) , ∀ x ∈ ( x 0 − ε , x 0 + ε ) ∖ { x 0 } , ∣ f ( x ) − A ∣ < ε \forall \varepsilon,\exist\delta(\varepsilon),\forall x\in (x_0-\varepsilon,x_0+\varepsilon)\setminus\{x_0\},|f(x)-A|<\varepsilon ε,δ(ε),x(x0ε,x0+ε){x0},f(x)A<ε,则称 lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to x_0}f(x)=A xx0limf(x)=A。特别当 x 0 = + ∞ x_0=+\infty x0=+时,其去心邻域代表 x > M x>M x>M;当 x 0 = − ∞ x_0=-\infty x0=时,其去心邻域代表 x < L x<L x<L

对比可以发现,数列极限与函数极限的主要区别除了连续与间断,还有,数列极限一定是一个趋向无限的极限,而函数极限则可以趋向于某一点,也可以趋向无限(这里不讨论双侧无限,可以看作是两个单词无限极限相同时的特殊情形)。


Heine定理提供了联系起函数极限与数列极限的桥梁。

Heine定理: lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to x_0}f(x)=A xx0limf(x)=A的充分必要条件是,对于任何满足条件 lim ⁡ n → ∞ x n = x 0 \lim\limits_{n\to \infty}x_n=x_0 nlimxn=x0 x n ≠ x 0 x_n\ne x_0 xn=x0的数列 { x n } \{x_n\} {xn},相应的函数值数列 { f ( x n ) } \{f(x_n)\} {f(xn)}成立 lim ⁡ n → ∞ f ( x n ) = A \lim\limits_{n\to \infty}f(x_n)=A nlimf(xn)=A

证明:

先证明必要性即 lim ⁡ x → x 0 f ( x ) = A ⇒ lim ⁡ n → ∞ f ( x n ) = A \lim\limits_{x\to x_0}f(x)=A\Rightarrow \lim\limits_{n\to \infty}f(x_n)=A xx0limf(x)=Anlimf(xn)=A

lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to x_0}f(x)=A xx0limf(x)=A可知,对于给定的 ε \varepsilon ε,存在一个 δ ( ε ) \delta(\varepsilon) δ(ε)使得对于 0 < ∣ x − x 0 ∣ < δ ( ε ) 0<|x-x_0|<\delta(\varepsilon) 0<xx0<δ(ε) x x x,都有 ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon f(x)A<ε

对于任何满足 x n → x 0 x_n\to x_0 xnx0的数列,给定这个 δ ( ε ) \delta(\varepsilon) δ(ε),必定存在一个 N ( ε ) N(\varepsilon) N(ε)使得 ∀ n > N ( ε ) \forall n>N(\varepsilon) n>N(ε),有 ∣ x n − x 0 ∣ < δ ( ε ) |x_n-x_0|<\delta(\varepsilon) xnx0<δ(ε)

又因为 x n ≠ n 0 x_n\ne n_0 xn=n0,所以 0 < ∣ x n − x 0 ∣ < δ ( ε ) 0<|x_n-x_0|<\delta(\varepsilon) 0<xnx0<δ(ε),这就说明 ∀ n > N ( ε ) , ∣ f ( x n ) − A ∣ < ε \forall n>N(\varepsilon),|f(x_n)-A|<\varepsilon n>N(ε),f(xn)A<ε。这就证明了必要性。

再证明充分性即 lim ⁡ n → ∞ f ( x n ) = A ⇒ lim ⁡ x → x 0 f ( x ) = A \lim\limits_{n\to \infty}f(x_n)=A\Rightarrow \lim\limits_{x\to x_0}f(x)=A nlimf(xn)=Axx0limf(x)=A,用反证法,如果这个命题错误,即对于所有趋向于 x 0 x_0 x0但不等于 x 0 x_0 x0的数列 { x n } \{x_n\} {xn} f ( x n ) f(x_n) f(xn)极限为 A A A,但至少存在一个函数 f ( x ) f(x) f(x)使得 lim ⁡ x → x 0 f ( x ) ≠ A \lim\limits_{x\to x_0}f(x)\ne A xx0limf(x)=A

那我们不妨就取这样一个极限不为 A A A的函数 f ( x ) f(x) f(x) lim ⁡ x → x 0 f ( x ) ≠ A \lim\limits_{x\to x_0}f(x)\ne A xx0limf(x)=A。由函数极限定义,如果 f ( x ) f(x) f(x) x 0 x_0 x0处极限不为 A A A,那么 ∃ ε 0 , ∀ δ > 0 , ∃ x 0 ′ ∈ U ∘ ( x 0 , δ ) , ∣ f ( x 0 ′ ) − A ∣ > ε 0 \exist\varepsilon_0,\forall \delta>0,\exist x_0'\in U^{\circ}(x_0,\delta),|f(x_0')-A|>\varepsilon_0 ε0,δ>0,x0U(x0,δ),f(x0)A>ε0

根据此性质,我们可以取定一个 ε 0 \varepsilon_0 ε0,由于对任意 δ \delta δ都有此性质成立,可以取一列 { δ n } \{\delta_n\} {δn}使得 δ n → 0 \delta_n\to 0 δn0,比如 δ n = 1 n \delta_n=\dfrac 1n δn=n1。对每一个 δ n \delta_n δn,都自然地存在一个 x 0 ′ = x n x_0'=x_n x0=xn满足
0 < ∣ x n − x 0 ∣ < 1 n , ∣ f ( x n ) − A ∣ > ε 0 . 0<|x_n-x_0|<\frac 1n,\quad |f(x_n)-A|>\varepsilon_0. 0<xnx0<n1,f(xn)A>ε0.
如此可以构造出一列数列 { x n } \{x_n\} {xn},由于 0 < ∣ x n − x 0 ∣ < 1 n → 0 0<|x_n-x_0|<\frac 1n\to 0 0<xnx0<n10,所以 x n → x 0 x_n\to x_0 xnx0 x n ≠ x 0 , ∀ n x_n\ne x_0,\forall n xn=x0,n。同时,因为 ∣ f ( x n ) − A ∣ > ε 0 |f(x_n)-A|>\varepsilon_0 f(xn)A>ε0,所以 f ( x n ) f(x_n) f(xn)不以 A A A为极限。

以上论证过程,说明任意一个极限不为 A A A的函数,都一定存在一个趋向于 x 0 x_0 x0但不等于 x 0 x_0 x0的数列 { x n } \{x_n\} {xn},满足 f ( x n ) ↛ A f(x_n)\nrightarrow A f(xn)A。那么,如果所有趋向于 x 0 x_0 x0但不等于 x 0 x_0 x0的数列 { x n } \{x_n\} {xn}都有 f ( x n ) → A f(x_n)\to A f(xn)A,那么一定就有 f ( x ) → A f(x)\to A f(x)A。充分性得证。


关于Heine定理,需要注意的一点是,趋向于 x 0 x_0 x0的数列 { x n } \{x_n\} {xn}必须满足 x n ≠ x 0 x_n\ne x_0 xn=x0这个条件,否则定理内容是不成立的。比如符号函数 s g n ( x ) {\rm sgn}(x) sgn(x)的绝对值 g ( x ) = ∣ s g n ( x ) ∣ g(x)=|{\rm sgn}(x)| g(x)=sgn(x),满足 lim ⁡ x → 0 g ( x ) = 1 \lim\limits_{x\to 0}g(x)=1 x0limg(x)=1,但是其收敛于 0 0 0的数列 { x n } , x n = 0 \{x_n\},x_n=0 {xn},xn=0 lim ⁡ n → ∞ f ( x n ) = 0 \lim\limits_{n\to \infty}f(x_n)=0 nlimf(xn)=0,其原因就是因为不满足 x n ≠ x 0 = 0 x_n\ne x_0=0 xn=x0=0的条件。

Heine定理常用于证明函数极限不存在,最典型的例子就是 f ( x ) = sin ⁡ 1 x f(x)=\sin \dfrac 1x f(x)=sinx1,构造两个子列:
x n ( 1 ) = 1 n π , x n ( 2 ) = 1 2 n π + π / 2 , x_n^{(1)}=\frac {1}{n\pi},\quad x_n^{(2)}=\frac{1}{2n\pi+\pi/2}, xn(1)=nπ1,xn(2)=2nπ+π/21,
f ( x n ( 1 ) ) → 0 , f ( x n ( 2 ) ) → 1 f(x_n^{(1)})\to 0,f(x_n^{(2)})\to 1 f(xn(1))0,f(xn(2))1就说明 f ( x ) f(x) f(x) x = 0 x=0 x=0处不存在极限。

如果我们不关心函数收敛到的值,只从函数自身的情况出发判断函数极限存在性,那么Heine定理可以改成以下形式: lim ⁡ x → x 0 f ( x ) \lim\limits_{x\to x_0}f(x) xx0limf(x)存在的充要条件是,对于任意满足条件 lim ⁡ x → ∞ x n = x 0 \lim\limits_{x\to \infty}x_n=x_0 xlimxn=x0 x n ≠ x 0 x_n\ne x_0 xn=x0的数列 { x n } \{x_n\} {xn},相应的函数值数列 { f ( x n ) } \{f(x_n)\} {f(xn)}收敛。

这个定理的充分性,只要注意到当 f ( x ) f(x) f(x)不收敛时,一定存在两个不同极限的数列 { x n ( 1 ) } \{x_n^{(1)}\} {xn(1)} { x n ( 2 ) } \{x_n^{(2)}\} {xn(2)},将它们交错构成一个新数列,这个新数列的函数值列不收敛。

由此可以推出函数极限的Cauchy收敛准则:函数极限 lim ⁡ x → + ∞ f ( x ) \lim\limits_{x\to +\infty}f(x) x+limf(x)存在且有限的充要条件是,对于任何给定的 ε > 0 \varepsilon>0 ε>0,存在 X > 0 X>0 X>0,使得对于一切 x ′ > X , x ′ ′ > X x'>X,x''>X x>X,x>X,有 ∣ f ( x ′ ) − f ( x ′ ′ ) ∣ < ε |f(x')-f(x'')|<\varepsilon f(x)f(x)<ε

由于Heine定理联系了离散态的数列极限和连续态的函数极限,因此求在无限远处的函数极限,常常可以用“夹逼”的方法,用前后两个自然数的极限夹逼得到连续函数在无限处的极限。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值