PID参数整定——Z-N方法

本文介绍了PID控制器的工作原理及各参数的作用,包括比例、积分和微分环节的特性。详细阐述了传统PID参数的经验整定步骤,并提出了基于Z-N法的PID参数整定方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、PID参数的控制效果


PID控制器是一种线性控制器,它根据输入值Rin(t)和输出值Yout(t)构成的偏差e(t)作为控制器的输入,其中

                          (1)

PID的控制策略如下

                   (2)

将式(2)写成传递函数的形式

           (3)

其中,Kp为比例系数,Ti为积分时间常数,Td为微分时间常数。

PID控制器各个矫正环节的作用如下:

(1)比例环节:成比例的反映控制系统的偏差e(t),偏差一旦产生,控制器立即产生作用,以减少偏差。

(2)积分环节:主要用于消除静差,提高系统的误差度,积分作用的强度取决于积分时间常数Ti,Ti越大,积分作用就越弱,反之则强。

(3)微分环节:反映偏差信号的变化趋势,并能在偏差信号变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,较小调节时间。

二、传统PID经验整定步骤

(1)关闭积分控制器I和微分控制器D的作用,单独使用比例控制器P,加大P的值,使系统出现震荡;

(2)较小P,使系统出现临界震荡,找到临界震荡点;

(3)加大I的作用,使系统达到设定值(积分控制器的作用就是消除稳态误差);

(4)重新上电,观察超调、震荡和稳定时间是否符合系统要求;

(5)针对超调和震荡的情况适当增加微分项(微分的作用是在系统有变坏的趋势之前予以矫正,对超调和震荡有很好地修正效果)。

以上(5)个步骤是PID调节过程中常用的经验法,但在寻找合适的I和D参数时,并非易事。常用的方法有Z-N法公式来确定I和D的参数。


三、基于Z-N法的PID参数整定

John Ziegler和Nathaniel Nichols发明了著名的回路整定技术使得PID算法在所有应用在工业领域内的反馈控制策略中是最常用的。Ziegler-Nichols整定技术是1942年第一次发表出来,直到现在还被广泛地应用着。

Ziegler-Nichols方法分为两步: 
1.  构建闭环控制回路,确定稳定极限。 

2.  根据公式计算控制器参数。 
稳定极限是由P元件决定的。当出现稳态振荡时就达到了这个极限。产生了临界系数Kpcrit和临界振荡周期Tcrit。



确定临界系数Kpcrit和临界振荡周期Tcrit后,根据下表的公式,计算其他参数:



Ziegler-Nichols (Z-N)则是一种用于PID控制器参数的工业工程方法。它提供了一种快速、初步的PID控制器参数策略,尤其适用于那些可以进行闭环试验的控制回路。该则基于对受控对象(系统)的阶跃响应分析来确PID控制器的比例(P)、积分(I)和微分(D)部分的参数值。 Ziegler-Nichols则是通过观察系统的开环阶跃响应行为来获取临界比例带(Critical Gain, Kc)和临界周期(Critical Period, Tc),然后根据这两个值来推算PID控制器的参数设置。依据不同的Z-N则变种,有多种公式: Ziegler-Nichols 最初版本 提供了两种模式: 经典PID:也称为“激进”或“临界振荡”,它基于系统在临界增益时出现的等幅振荡现象。 P: Kc I: 0.5 * Tc / Kc D: 0.125 * Tc Ziegler-Nichols 经验 或改进版: 提出了一个更保守的方案,以减少超调量并改善稳性。 PI控制器参数: P: 0.6*Kc I: 1.2*Tc/Kc PID控制器参数: P: 0.45*Kc I: 1.2*Tc/Kc D: 0.075*Tc 其他变种 包括例如渐近、终极等,它们提供了更多的折衷方案,在保证稳性的前提下优化动态性能。 在实际应用中,虽然Ziegler-Nichols则提供了一种快速方法,但往往需要针对具体系统的特性进行进一步的调,以达到最优的控制效果。此外,现代控制系统可能采用更为高级的自或更为复杂的模型预测控制技术。
### 典型控制系统 PID 参数方法 对于典型控制系统的 PID 参数,通常采用的方法包括但不限于 Ziegler-Nichols (Z-N) 、Cohen-Coon 以及基于实际调试的经验。以下是这些方法的具体描述: #### 1. Ziegler-Nichols (Z-N) 方法方法是一种经典的 PID 参数技术,主要依赖于临界比例度实验来获取控制器的比例增益 \( K_p \) 和积分时间常数 \( T_i \)[^3]。具体过程如下: - 首先,在闭环系统中逐步增加比例增益 \( K_p \),直到系统进入持续振荡状态。 - 记录此时的比例增益 \( K_u \)(即临界增益)和对应的振荡周期 \( T_u \)。 - 利用查表的方式确最终的 PID 参数值。 | 控制器类型 | 比例增益 (\(K_p\)) | 积分时间 (\(T_i\)) | 微分时间 (\(T_d\)) | |------------|---------------------|--------------------|--------------------| | P | \(0.5 K_u\) | —— | —— | | PI | \(0.45 K_u\) | \(0.87 T_u\) | —— | | PID | \(0.6 K_u\) | \(0.5 T_u\) | \(0.125 T_u\) | 这种方法的优点在于简单易行,但其缺点是对不同工况下可能存在的动态变化适应能力较差[^3]。 #### 2. Cohen-Coon 方法 相比 Z-N 方法,Cohen-Coon 更加注重系统的稳性和鲁棒性。它通过对开环阶跃响应曲线进行分析,提取出上升时间和峰值时间等特征参数,并据此推导出适合的 PID 参数设置。此方法特别适用于具有较大纯滞后的一阶惯性系统。 假设已知系统的传递函数形式为: \[ G(s)=\frac{K}{Ts+1}e^{-Ls}, \] 其中 \( K \) 是放大系数,\( T \) 表示时间常数,而 \( L \) 则代表纯滞后的大小,则相应的 PID 参数可以按照下面公式计算得出: \[ K_p=\frac{\delta(T+0.5L)}{KP(L)}, \quad T_i=2L+\Delta t,\quad T_d=\frac{T}{8}. \] 这里需要注意的是,上述表达中的变量义需严格遵循标准流程获得的数据处理结果才能保证准确性。 #### 3. 工程实践中的经验策略 除了理论上的手段外,现场工程师往往还会依据丰富的实践经验来进行微调优化。例如当发现系统存在超调现象时可适当减小比例项强度或者延长积分作用时间;如果遇到震荡频繁的情况则应考虑引入一的微分校正动作等等[^2]。 ```python class PIDController: def __init__(self, kp, ki, kd): self.kp = kp self.ki = ki self.kd = kd def compute(self, error, dt): p_term = self.kp * error i_term += self.ki * error * dt d_term = self.kd * (error - previous_error) / dt output = p_term + i_term + d_term previous_error = error return output ``` 以上代码片段展示了一个简单的增量式 PID 控制器实现逻辑。 ---
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

路漫求索_CUMT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值