ORB-SLAM2
ORB-SLAM2(Oriented FAST and Rotated BRIEF SLAM)是一个开源的、基于特征的SLAM(Simultaneous Localization and Mapping)系统,它由Raul Mur-Artal、Jorge D. Tardos和Jose M. M. Montiel在2017年提出。ORB-SLAM2在ORB-SLAM的基础上进行了改进,提高了系统的鲁棒性、精度和效率。以下是ORB-SLAM2的整体框架结构概述:
-
系统初始化:
- 在系统启动时,ORB-SLAM2首先进行初始化,包括估计相机的内参、外参,以及构建一个初始的地图。
-
特征提取与匹配:
- 使用ORB(Oriented FAST and Rotated BRIEF)特征点检测器提取图像中的关键点,并计算其描述符。
- 在连续帧之间进行特征匹配,以估计相对运动。
-
运动估计:
- 使用基于特征点的匹配,ORB-SLAM2估计相机之间的相对运动。这包括使用PnP(Perspective-n-Point)算法进行粗略估计,然后通过RANSAC(Random Sample Consensus)进行优化。
-
地图构建与更新:
- 在估计出相机运动后,ORB-SLAM2将新帧的关键点与已