振动力学学习笔记: 理想元件(二) 阻尼元件及其简化模型

前情提要
绪论(一) 振动力学的基本概念
绪论(二) 振动力学的基本问题与基本方法
绪论(三) 简谐振动及其三角函数、矢量、复数表示法

理想元件(一) 弹性元件及其简化模型



阻尼元件基本属性

阻尼元件为耗能元件,在振动过程中,阻尼器始终产生阻尼阻碍质量元件的运动,从而以做负功的形式消耗系统的能量。
1-阻尼器图示
基本假设

  • 忽略阻尼器的质量
  • 阻尼元件对于外激励的响应为其移动速度的函数 F d = f ( x ˙ ) (1) F_\text{d}=f(\dot{x})\tag{1} Fd=f(x˙)(1)

粘性阻尼

粘性阻尼 (viscous damping) 与速度成正比的阻尼,最简单的阻尼模型
粘性阻尼是一种 线性阻尼 (linear damping)


对于平移振动系统 F d = c x ˙ (2) F_\text{d}=c\dot{x}\tag{2} Fd=cx˙(2)
阻尼系数 c c c

  • 阻尼器产生单位速度时所需要施加的阻尼力
  • 量纲 [ M ] [ T − 1 ] [\text{M}][\text{T}^{-1}] [M][T1]
  • 国际制单位 N ⋅ s / m \text{N}\cdot\text{s}/\text{m} Ns/m

对于角振动系统 M d = c θ ˙ (3) M_\text{d}=c\dot{\theta}\tag{3} Md=cθ˙(3)
扭转阻尼系数 c c c

  • 阻尼器产生单位角速度时所需要施加的阻尼力矩
  • 量纲 [ M ] [ L ] 2 [ T − 1 ] [\text{M}][\text{L}]^2[\text{T}^{-1}] [M][L]2[T1]
  • 国际制单位 N ⋅ m ⋅ s / rad \text{N} \cdot \text{m} \cdot \text{s}/\text{rad} Nms/rad

和弹性元件类似,复杂系统中的阻尼元件组也可以等效为一个 等效阻尼 (equicalent damping),其系数称为 等效阻尼系数。其值可利用原系统和简化系统阻尼耗能相等的原则确定。


非粘性阻尼

所有不适用粘性模型的阻尼,种类很多


库仑阻尼

库伦阻尼 (Coulomb damping) = 干摩擦阻尼

  • 方向与运动速度方向相反
  • 大小保持不变

F d = − μ ⋅ m g ⋅ sgn ( x ˙ ) (4) F_\text{d}=-\mu \cdot mg \cdot \text{sgn}\left(\dot{x}\right)\tag{4} Fd=μmgsgn(x˙)(4)

  • 干摩擦系数 μ \mu μ 取决于接触面属性 (材料、粗糙度)
  • 符号函数 sgn ( x ˙ ) = x ˙ ( t ) ∣ x ˙ ( t ) ∣ \text{sgn}(\dot{x})=\frac{\dot{x}(t)}{|\dot{x}(t)|} sgn(x˙)=x˙(t)x˙(t)

结构阻尼

结构阻尼 (structural damping) = 滑移阻尼 + 材料阻尼
滑移阻尼 各构件发生相对滑动而产生的的阻尼
材料阻尼 材料在弹塑性范围内加、卸载曲线不重合,存在滞回曲线,将导致能量的耗散 (其大小为滞回曲线所围的面积),从而产生阻尼。

  • 方向与运动速度方向相反
  • 对于大多数金属,材料阻尼在一个周期内所消耗的能量与振幅的平方成正比,而在相当大的范围内与振动频率无关 W d = α x max 2 (5) W_\text{d}=\alpha x_\text{max}^2\tag{5} Wd=αxmax2(5)
    2-弹塑性材料的加、卸载曲线

流体阻尼

流体阻尼 (fluid damping) 物体以较大速度在粘性较小的流体 (如空气、液体) 中运动时,流体介质对运动物体产生的阻尼

  • 方向与运动速度方向相反
  • 大小与速度的平方成正比 F d = − γ x ˙ 2 sgn ( x ˙ ) (6) F_\text{d}=-\gamma\dot{x}^2\text{sgn}(\dot{x})\tag{6} Fd=γx˙2sgn(x˙)(6)

参考文献

[1] 鲍文博,白泉,陆海燕.振动力学基础与MATLAB应用[M].北京:清华大学出版社,2015:24~25.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值