国内12家主流大模型,谁是地表最强?亲测后发现是它!。。。

到现在2024年,国产大模型工信部注册的,已有几百家。

国产大模型崛起速度之快,令人惊叹。

在如此之多的大模型里面,如何选择好用的,还真是个问题。

结合GPT4o和Claude3.5,加上自身的一定使用,总结了如下12家国产大模型:

下面表格,排名不分先后

各自产品对应的logo如下:

文字版介绍:

1 百度:推出了“文心一言”大模型,具备强大的自然语言处理能力,广泛应用于搜索、对话等领域。

2 阿里巴巴:发布了“通义千问”大模型,支持多种语言理解和生成任务,应用于电商、云计算等场景。

3 腾讯:研发了“混元”大模型,强调多模态融合,应用于社交、游戏等领域。

4 华为:推出了“盘古”大模型,专注于自然语言处理和计算机视觉,应用于云服务和智能设备。

5 科大讯飞:发布了“星火认知”大模型,强调语音识别和自然语言理解,广泛应用于教育和办公领域。

6 商汤科技:推出了“日日新”大模型,专注于计算机视觉和多模态融合,应用于安防和自动驾驶等领域。

7 智谱AI:研发了“GLM-4”大模型,具备强大的语言理解和生成能力,应用于科研和教育领域。

8 字节跳动:推出了“豆包”大模型,应用于内容创作和推荐系统。

9 360公司:发布了“360智脑”大模型,强调安全性和信息检索,应用于搜索和安全领域。

10 昆仑万维:天工AI,双千亿级大语言模型,国内首个AI搜索产品“天工AI搜索”。

11 快手:推出了“可灵AI”大模型,应用于短视频内容创作和推荐。

12 月之暗面科技:研发了“Kimi”大模型,专注于对话式服务和智能助手。


看到这里的老铁,可能会有问题,哪家最强呢?

就要看如何评价一个大模型的能力,有三个最重要的指标。

一般来说,衡量指标有三个:第一:文本生成能力;第二:任务推理能力;第三:通用和泛化能力。

文本生成能力:文本生成能力指模型在自然语言生成中的流畅性、语义相关性和多样性。常用评估方法包括困惑度(Perplexity)、BLEU和ROUGE等指标。

推理能力:推理能力反映模型在逻辑推导、知识应用和因果推理任务中的表现。强推理能力使模型能够理解上下文并完成复杂问题的解答。

泛化能力:泛化能力体现模型在未见过的数据或任务上的适应性。优秀的泛化能力意味着模型能跨领域、跨语言和多模态高效工作。

而数学推理能力又是重中之重,它体现了模型的智力水平,推理能力强,才能应对复杂任务。

而咱们平时的需求,主要也是以复杂任务为主,否则我们也不会使用它们,简单的任务,咱们自己就能做了;重复的任务,咱们写几行代码,就自动化了。

目前openAI的o1推理能力公认最好的,我询问了它,给出数学推理能力前三强:

但是它的知识目前只学习到了2023年10月,所以排名只能参考。

为了进一步客观,我又询问了数学推理能力很强的Claude3.5 ,它的回答如下:

总结来说,智谱GLM-4,文心一言,通义千问,KIMI,是o1和claude3.5给出的答案。

第一轮筛选过后,我再亲测上面上榜四个大模型。

测试方法,选择一个标准数学数据集,就拿GSM8K吧,先找一道典型题目,逐一询问它们。

选择下面这道:

为什么选择这道题目呢,因为GPT-4o这道题目都无法给出准确答案。

如下所示,给出答案8,这是错误的:

这就热闹了,看看国产大模型能否答对。

先提问智谱GLM-4,答案10,回答正确:

再提问文心一言,使用3.5,得到答案是8,回答错误。已开通会员的可以试试文心4回答是否正确:

再提问通义千问2.5,结果10,回答正确:

最后提问KIMI,结果8,回答错误:

经过第二轮一道题测试,发现回答正确的大模型,剩下两个,分别是GLM-4、通义千问。

最后一轮测试,选择一道2024年全国卷高考数学题,找一道我还会的选择题

我做了下,答案是B:

先提问GLM-4,回答B,结果正确:

再提问通义千问,回答A,结果错误:

顺便提问了下GPT-4o,它选了C,又错了:

经过三轮数学测试,就剩 GLM-4。

国产大模型的智力水平,目前已经有超越GPT-4o的趋势,让人惊艳!

期待国产大模型和厂家们再接再厉,不断突破。

备注:要想得出更加客观全面的智力水平,请参考基于不同整个数据集、不同推理水平测试维度的全面评价,本测试限于篇幅,只做初步测试。


今年大厂面试,竞争激烈,学校好,技术好,才能占得先机,学校不好只能加倍强化技术,才会有更多机会。

AI教程免费学习访问入口:

https://zglg.work

更多开源教程访问网站免费学习

普通人了解AI应该做的最重要两件事:

  • 应该先从AI工具使用开始

  • 应该先了解AI基础名词

普通人了解AI大忌:

  • 不应该上来就学AI理论

  • 不应该排斥AI,认为AI无用

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

<think>好的,用户想要了解国内公司的AI大模型排名。首先,我需要确定用户的需求是什么。他们可能是在做市场调研,或者在选择合作伙伴,也可能是学术研究。不管怎样,用户需要的是一个综合的排名,涵盖主要公司和他们的模型。 接下来,我需要回忆国内有哪些主要的公司推出了大模型。百度、阿里、腾讯、华为这些大厂肯定有。然后是字节跳动、科大讯飞、商汤科技、智谱AI、MiniMax、零一万物等。可能还有一些初创公司,但用户可能更关注知名度高的。 然后,排名的依据是什么?通常包括技术能力、应用场景、商业化程度、开源情况、创新能力等。但用户可能想要一个综合的排名,而不是分项评估。不过直接说排名可能有主观性,需要说明这一点。 我需要先列出每个公司的模型,比如百度的文心一言,阿里的通义千问,腾讯的混元,华为的盘古,字节的云雀,讯飞的星火,商汤的日日新,智谱的GLM,MiniMax的ABAB,零一万物的Yi系列,还有百川智能和深度求索的模型。 接下来,按什么顺序排列?可能需要根据技术实力、市场影响力、应用范围来排序。百度、阿里、腾讯、华为这些大厂可能在前列,但讯飞、商汤这些专注于AI的公司也有竞争力。字节作为新入局的,但资源多,可能排名也不低。另外,像智谱AI这样的初创公司,虽然成立时间不长,但技术上有亮点,比如GLM-4。 需要注意的是,排名可能因评价标准不同而变化,比如有的模型在特定领域表现好,有的在商业化上更成功。此外,开源模型和闭源模型也有区别,比如百川和深度求索的开源模型可能在开发者中更受欢迎。 还要考虑最新动态,比如最近几个月有没有新模型发布,或者性能提升。比如讯飞的星火大模型3.5可能在某些评中表现不错,而华为的盘古强调B端应用,可能在企业级市场有优势。 另外,用户可能想知道这些模型的特点,比如多模态能力、参数规模、应用场景等。所以在介绍每个公司时,需要简要说明其模型的特色和优势。 可能还需要提到政策和数据安全的影响,国内模型更注重中文环境和本土化需求,这也是一个优势点。 最后,要避免绝对化的排名,而是给出一个分档,比如第一梯队、第二梯队,或者按领域划分,这样更客观。同时提醒读者排名是动态变化的,可能存在主观因素,建议参考第三方评。 总结一下,我的回答结构应该是:先说明排名的主观性和动态性,然后分公司介绍其模型和特点,最后给出一个分档排名,并建议参考具体需求选择模型。</think>国内AI大模型的竞争格局目前处于快速发展阶段,各公司在技术能力、应用场景和商业化进展上各有侧重。由于评价标准不同(如技术性能、生态布局、行业影响力等),以下排名综合了技术实力、市场声量及实际应用情况,仅供参考(截至2024年7月): --- ### **第一梯队(综合实力领先)** 1. **百度·文心一言(ERNIE Bot)** - 优势:依托搜索引擎数据和多年NLP技术积累,多模态能力突出,已迭代至4.0版本,覆盖搜索、内容创作、企业服务等领域。 - 生态:通过“文心大模型”开放平台赋能千行百业,商业化落地广泛。 2. **阿里云·通义千问(Qwen)** - 优势:参数规模达万亿级,开源版本(如Qwen-72B)受开发者关注,与阿里云生态深度整合,在电商、金融场景表现突出。 - 动态:通义2.5版本强化逻辑推理和长文本处理能力。 3. **科大讯飞·星火大模型(Spark)** - 优势:专注教育、医疗等垂直领域,语音交互能力国内领先,星火3.5版本在多项中文评排名前列。 - 应用:已落地智慧课堂、医疗辅诊等场景。 --- ### **第二梯队(技术突破/垂直领域领先)** 4. **字节跳动·云雀(Lark/Doubao)** - 优势:依托抖音、头条的海量数据,擅长内容生成与推荐,C端产品“豆包”用户增长迅速。 5. **华为·盘古大模型** - 优势:聚焦B端工业场景(气象预、矿山调度等),联合昇腾AI生态,强调行业解决方案而非通用对话。 6. **智谱AI·GLM大模型** - 优势:清华系团队背景,GLM-4在多语言、代码生成能力突出,开源生态活跃(ChatGLM系列)。 7. **商汤科技·日日新(SenseNova)** - 优势:计算机视觉技术加持,多模态生成(如视频)能力较强,布局智慧城市、自动驾驶等场景。 8. **MiniMax·ABAB大模型** - 优势:聚焦AIGC赛道,旗下“海螺AI”在长文本生成和拟人化交互体验上有特色。 --- ### **第三梯队(快速追赶/细分赛道)** 9. **零一万物·Yi系列** - 亮点:李开复团队推出,Yi-34B曾登顶HuggingFace开源榜,长上下文处理能力突出。 10. **百川智能·Baichuan** - 亮点:王小川团队主导,Baichuan2开源模型在中文数学、代码任务表现优异。 11. **深度求索·DeepSeek** - 亮点:专注模型轻量化,DeepSeek-MoE架构在推理成本控制上有创新。 12. **昆仑万维·天工(Skywork)** - 动态:3.0版本支持万字上下文,重点布局海外市场。 --- ### **评价维度补充** - **开源影响力**:智谱AI(ChatGLM)、阿里(Qwen)、零一万物(Yi)的开源模型在开发者社区接受度较高。 - **垂直领域**:医疗(医联的MedGPT)、金融(恒生的Warren)、法律(幂律的ChatLaw)等赛道涌现专业模型。 - **政策支持**:北京、上海、深圳等地政府主导的联合实验室(如北京通用AI研究院)正推动国产算力与模型协同发展。 --- ### **争议与挑战** 1. **同质化竞争**:多数大模型在通用能力上趋同,差异化多依赖数据场景而非技术代差。 2. **算力瓶颈**:英伟达芯片限制下,国产算力(华为昇腾、寒武纪等)的适配仍需时间。 3. **商业化路径**:除云服务、API调用外,C端付费习惯尚未成熟,盈利模式待探索。 建议结合具体场景需求(如开源/闭源、中文理解、行业适配)选择模型,可参考权威评(如SuperCLUE、C-Eval)的最新结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值