到现在2024年,国产大模型工信部注册的,已有几百家。
国产大模型崛起速度之快,令人惊叹。
在如此之多的大模型里面,如何选择好用的,还真是个问题。
结合GPT4o和Claude3.5,加上自身的一定使用,总结了如下12家国产大模型:
下面表格,排名不分先后
各自产品对应的logo如下:
文字版介绍:
1 百度:推出了“文心一言”大模型,具备强大的自然语言处理能力,广泛应用于搜索、对话等领域。
2 阿里巴巴:发布了“通义千问”大模型,支持多种语言理解和生成任务,应用于电商、云计算等场景。
3 腾讯:研发了“混元”大模型,强调多模态融合,应用于社交、游戏等领域。
4 华为:推出了“盘古”大模型,专注于自然语言处理和计算机视觉,应用于云服务和智能设备。
5 科大讯飞:发布了“星火认知”大模型,强调语音识别和自然语言理解,广泛应用于教育和办公领域。
6 商汤科技:推出了“日日新”大模型,专注于计算机视觉和多模态融合,应用于安防和自动驾驶等领域。
7 智谱AI:研发了“GLM-4”大模型,具备强大的语言理解和生成能力,应用于科研和教育领域。
8 字节跳动:推出了“豆包”大模型,应用于内容创作和推荐系统。
9 360公司:发布了“360智脑”大模型,强调安全性和信息检索,应用于搜索和安全领域。
10 昆仑万维:天工AI,双千亿级大语言模型,国内首个AI搜索产品“天工AI搜索”。
11 快手:推出了“可灵AI”大模型,应用于短视频内容创作和推荐。
12 月之暗面科技:研发了“Kimi”大模型,专注于对话式服务和智能助手。
看到这里的老铁,可能会有问题,哪家最强呢?
就要看如何评价一个大模型的能力,有三个最重要的指标。
一般来说,衡量指标有三个:第一:文本生成能力;第二:任务推理能力;第三:通用和泛化能力。
文本生成能力:文本生成能力指模型在自然语言生成中的流畅性、语义相关性和多样性。常用评估方法包括困惑度(Perplexity)、BLEU和ROUGE等指标。
推理能力:推理能力反映模型在逻辑推导、知识应用和因果推理任务中的表现。强推理能力使模型能够理解上下文并完成复杂问题的解答。
泛化能力:泛化能力体现模型在未见过的数据或任务上的适应性。优秀的泛化能力意味着模型能跨领域、跨语言和多模态高效工作。
而数学推理能力又是重中之重,它体现了模型的智力水平,推理能力强,才能应对复杂任务。
而咱们平时的需求,主要也是以复杂任务为主,否则我们也不会使用它们,简单的任务,咱们自己就能做了;重复的任务,咱们写几行代码,就自动化了。
目前openAI的o1推理能力公认最好的,我询问了它,给出数学推理能力前三强:
但是它的知识目前只学习到了2023年10月,所以排名只能参考。
为了进一步客观,我又询问了数学推理能力很强的Claude3.5 ,它的回答如下:
总结来说,智谱GLM-4,文心一言,通义千问,KIMI,是o1和claude3.5给出的答案。
第一轮筛选过后,我再亲测上面上榜四个大模型。
测试方法,选择一个标准数学数据集,就拿GSM8K吧,先找一道典型题目,逐一询问它们。
选择下面这道:
为什么选择这道题目呢,因为GPT-4o这道题目都无法给出准确答案。
如下所示,给出答案8,这是错误的:
这就热闹了,看看国产大模型能否答对。
先提问智谱GLM-4,答案10,回答正确:
再提问文心一言,使用3.5,得到答案是8,回答错误。已开通会员的可以试试文心4回答是否正确:
再提问通义千问2.5,结果10,回答正确:
最后提问KIMI,结果8,回答错误:
经过第二轮一道题测试,发现回答正确的大模型,剩下两个,分别是GLM-4、通义千问。
最后一轮测试,选择一道2024年全国卷高考数学题,找一道我还会的选择题
我做了下,答案是B:
先提问GLM-4,回答B,结果正确:
再提问通义千问,回答A,结果错误:
顺便提问了下GPT-4o,它选了C,又错了:
经过三轮数学测试,就剩 GLM-4。
国产大模型的智力水平,目前已经有超越GPT-4o的趋势,让人惊艳!
期待国产大模型和厂家们再接再厉,不断突破。
备注:要想得出更加客观全面的智力水平,请参考基于不同整个数据集、不同推理水平测试维度的全面评价,本测试限于篇幅,只做初步测试。
今年大厂面试,竞争激烈,学校好,技术好,才能占得先机,学校不好只能加倍强化技术,才会有更多机会。
AI教程免费学习访问入口:
https://zglg.work
更多开源教程访问网站免费学习
普通人了解AI应该做的最重要两件事:
-
应该先从AI工具使用开始
-
应该先了解AI基础名词
普通人了解AI大忌:
-
不应该上来就学AI理论
-
不应该排斥AI,认为AI无用
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!