内容概要
1.绪论
数字图像的定义
图像处理系统
2.数字图像处理基础
人的视觉特点
图像的形成模型
图像缩放——该处有实验
3.灰度转换和空间滤波
点处理——>建立变换映射:掌握幂值变换和log变换
直方图处理,直方图均衡,直方图匹配——我猜这里肯定会出大题
要认识到不同的图像可能会有相同的直方图
滤波处理(各种滤波器:线性的滤波器(要知道如何证明线性和非线性、非线性滤波器(各自举例
常见滤波器
·均值滤波——平滑处理
·拉普拉斯算子——锐化
·索比尔算子——边缘检测
平滑算子——滤波器之和等于1
锐化算子——滤波器之和等于0
4.频域滤波(重点)
傅里叶变换!!!!
卷积定理:频域和空域的关系
掌握:频域滤波的基本步骤——!!
平滑频域滤波器:低通 高斯、理想、巴特沃斯
锐化频域滤波器:高通 高斯、理想、巴特沃斯
1.绪论部分
-数字图像的定义:图像可以定义为一个二维函数,f(x,y), -其中x,y为空间坐标,f的幅值称为该点图像的强度或灰度-数字图像:当x,y和f的幅值都是有限的离散量
-图像处理系统:
传输通信(涉及到图像压缩)
|
采集图像——处理和分析——输出(终端各种显示器)
(色彩格式、量化采样) |
存储
2.数字图像处理基础
-人的视觉特点
锥状细胞:识别细节,对颜色敏感,适亮视觉
柱状细胞:识别图像大体,不涉及色觉,适暗视觉
人对亮度比较敏感,但是对色彩不是那么敏感(YCbCr)
-图像的形成模型:采样和量化
采样:将坐标值数字化(M*N图像像素块——空间分辨率)
量化:振幅值数字化(灰度级2^k)
——所以一张图需要的存储空间是k*M*N
-图像缩放——该处有实验
缩放和收缩需要两个步骤
-步骤1:创建新的像素位置
•例如,在大小为500×500的原始图像上放置一个假想的750×750网格
-步骤2:灰度值分配
•最近邻插值
•双线性插值
-邻域&连通性&通路&闭合通路(这个不一定会考,了解一下)
·4近邻——四联通
·对角近邻ND(p)
·8近邻——八联通
·混合联通:N4(p)∩N4(q)中没有像素值属于集合V的像素则称p和q是m连通
3.灰度转换和空间滤波
---点处理(点的灰度)——此处有实验哦
基本公式,S代表处理后的点,T代表变换公式,r代表处理前的点
图像底片:S=L-1-r;
对数变换:s = c log(1 + r) ;//c一般取1,应用在傅里叶变换压缩的时候
幂律变换: s = c r^γ; //c是常数,γ是幂,应用在电视信号矫正
分线段函数:这个部分能看懂分线段函数是要干嘛的就可以了,比如
A:将中间部分灰度拉伸(对比度拉伸)
B:强调了[A,B]范围并且减弱了其他部分
C:强调了[A,B]但是没有减弱其他部分
---直方图处理
-什么是直方图?什么是直方图均衡化?我就不说了这个如果不懂的话基本要回炉重造了
-直方图均衡化——此处有实验
作用:显示大量灰度细节和高动态范围的图像,对比度很好的图片,它的直方图一般都是均衡的
如何做?——此处有可能出大题哦!!!
-直方图匹配
怎么做?题目会告诉你灰度级,概率分布和目标概率分布
--- 滤波处理
各种滤波器:线性的滤波器(要知道如何证明线性和非线性)、非线性滤波器(各自举例)
证明是线性的(这里只有傅里叶变换的例题了私密马赛)
线性滤波有:均值滤波器
满足下列式子的都是线性滤波器(W代表滑动窗口)
非线性滤波有:(次序统计滤波器)中值滤波,最大最小值滤波(就是块A的中值是a,块B的中值是b,块A+B的中值如果是a+b那就是中值的,但显然不可能,所以中值滤波非线性)
常见滤波器
·均值滤波——平滑线性滤波器:模糊、使图像联通、去噪,又叫低通滤波器
·次序统计滤波器:最有名的是中值,它可以很好的去除椒盐噪声
·索比尔算子——边缘检测:一阶差分
·拉普拉斯算子——锐化:二阶差分
不论是哪个锐化滤波器,都是基于一阶差分or二阶差分的:一阶导数通常对灰度阶跃(边缘)有更强的响应——二阶导数对细节有更强的响应比如线和点
二阶导数-它们对线的响应比对步进的响应更强,对点的响应比对线的响应更强-比一阶导数更适合图像增强-更简单的实现和扩展
还有一种锐化算法:Unsharp Masking,就是用原图减去原图的模糊版,得到的就是原图的细节
卷积操作如何处理边缘像素?
在卷积操作开始之前,先增加边缘像素:复制最边缘像素、是以最边缘像素为轴对称复制、以一个常量像素值填充
4.频域滤波
---傅里叶变换DFT:快速傅里叶变换FFT
引用一段大神的话来解释频域和空域的对应关系:傅里叶变换就是通过数学的方法反向分解复杂的信号,使之成为一个个简单的正弦信号,那么问题来了,这么多简单的信号,每个正弦信号都在时域图上画出来也没有什么意义,人类只需要记住每个正弦信号的相位和角频率就ok了,那么随时随地我们都可以制造这些简单的信号,把它们在时域上相加,就会再现相同的复杂信号,这时,频域的意义就凸现了,频域就是记录每个简单正弦信号相位和角频率的方式,分别用幅度谱和相位谱来表示
下面这一页的公式要会
注意一下最后面的频域空域变换等价式子,因为这个出过题(如下)
相位和幅度哪个影响大?
相位
频谱混叠是什么?
采样频率小于信号最大频率的两倍时候出现频率混叠问题。我们知道频率是物质在单位时间内完成周期性变化的次数,可以理解为完成一次的标志是一个开始和一个结束,假设在1s中完成了5次变化,如果采样频率小于10次,都没有办法表示每一个周期变化的开始和结束,那么两个周期之间就会叠在一起
---卷积定理
函数卷积的傅立叶变换是函数傅立叶变换的乘积:就是说,在空域函数(某个滤波器)先卷积再傅里叶变换,相当于这个函数先傅里叶变换到频域,然后再与原图像相乘。
然后知道这些就可以在频域设计各种滤波器了!
在频域上的滤波器设计:陷波滤波器、低通滤波器、高通滤波器
※巴特沃斯滤波器(这个老师有重点强调)
※傅里叶变换的整个流程(频域滤波的基本步骤)——此处有实验!
具体的做法(一共六个步骤!)
①给定一个大小为M×N的输入图像f(x,y),形成一个大小为P×Q的填充图像fp (x,y)。通常,我们选择P=2M和Q=2N 其他部分补零
②将fp(x,y)乘以(-1)x+y使其频谱中心化
③傅里叶变换计算F(u,v)
④设计滤波器并滤波:生成实对称滤波器函数H(u,v),大小为P×Q,中心为(P/2, Q/2)。得到G(u,v) = H(u,v)F(u,v)
⑤G做逆傅里叶变换得到gp:gp(x,y) = {real[ifft(G(u,v))]}(-1)x+y,这里强调一下(1).取结果的实部和( 2).乘以(-1)x+y
⑥从gp(x,y)的左上象限提取M×N区域,得到最终处理结果g(x,y)
-频域的高斯滤波器
高斯滤波器的傅里叶变换还是高斯函数
如果在频域高斯函数是非常瘦长的,那么它的空域状态就是比较宽大的
两个高斯函数可以构建一个高通滤波器,或者 1-一个高斯函数
-频域的三个低通滤波器
---理想滤波器 ILPF:振铃
解释理想滤波器振铃效应出现的原因?期中考试有考哦!
将频域的理想滤波器傅里叶变换到空域会发现函数长这个样子,旁瓣会产生振铃
---巴特沃斯滤波器BLPF——这里有实验
需要人定的参数是n和D0,但是n越大越会有振铃
---高斯函数滤波器
-参数解释D0(截止频率)D是(u,v)到中心点的欧式距离
这里引申出一个问题,如何寻找合适的截止频率D0?一般根据保留功率谱的百分比来确定的
-相对应的频域的三个高通滤波器
用1减去低通滤波器
还有他们分别在空域的样子
巴特沃斯
高斯