厦大数字图像处理复习上

内容概要

1.绪论

数字图像的定义

图像处理系统

2.数字图像处理基础

人的视觉特点

图像的形成模型

图像缩放——该处有实验

3.灰度转换和空间滤波

点处理——>建立变换映射:掌握幂值变换和log变换

直方图处理,直方图均衡,直方图匹配——我猜这里肯定会出大题

要认识到不同的图像可能会有相同的直方图

滤波处理(各种滤波器:线性的滤波器(要知道如何证明线性和非线性、非线性滤波器(各自举例

常见滤波器

·均值滤波——平滑处理

·拉普拉斯算子——锐化

·索比尔算子——边缘检测

平滑算子——滤波器之和等于1

锐化算子——滤波器之和等于0

4.频域滤波(重点)

傅里叶变换!!!!

卷积定理:频域和空域的关系

掌握:频域滤波的基本步骤——!!

平滑频域滤波器:低通  高斯、理想、巴特沃斯

锐化频域滤波器:高通 高斯、理想、巴特沃斯


1.绪论部分

-数字图像的定义:图像可以定义为一个二维函数,f(x,y), -其中x,y为空间坐标,f的幅值称为该点图像的强度或灰度-数字图像:当x,y和f的幅值都是有限的离散量

-图像处理系统:

             传输通信(涉及到图像压缩)

                                      |

         采集图像——处理和分析——输出(终端各种显示器)

(色彩格式、量化采样) |

存储


2.数字图像处理基础

-人的视觉特点

        锥状细胞:识别细节,对颜色敏感,适亮视觉

        柱状细胞:识别图像大体,不涉及色觉,适暗视觉

        人对亮度比较敏感,但是对色彩不是那么敏感(YCbCr)

-图像的形成模型:采样和量化

 采样:将坐标值数字化(M*N图像像素块——空间分辨率)

量化:振幅值数字化(灰度级2^k)

——所以一张图需要的存储空间是k*M*N

-图像缩放——该处有实验

缩放和收缩需要两个步骤

-步骤1:创建新的像素位置

        •例如,在大小为500×500的原始图像上放置一个假想的750×750网格

-步骤2:灰度值分配

        •最近邻插值

        •双线性插值

-邻域&连通性&通路&闭合通路(这个不一定会考,了解一下)

        ·4近邻——四联通

        ·对角近邻ND(p)

        ·8近邻——八联通

        ·混合联通:N4(p)∩N4(q)中没有像素值属于集合V的像素则称p和q是m连通


3.灰度转换和空间滤波

 ---点处理(点的灰度)——此处有实验哦

        基本公式,S代表处理后的点,T代表变换公式,r代表处理前的点

        图像底片:S=L-1-r;

        对数变换:s = c log(1 + r) ;//c一般取1,应用在傅里叶变换压缩的时候

        幂律变换: s = c r^γ;  //c是常数,γ是幂,应用在电视信号矫正

         分线段函数:这个部分能看懂分线段函数是要干嘛的就可以了,比如

        A:将中间部分灰度拉伸(对比度拉伸)

        B:强调了[A,B]范围并且减弱了其他部分

        C:强调了[A,B]但是没有减弱其他部分

---直方图处理

-什么是直方图?什么是直方图均衡化?我就不说了这个如果不懂的话基本要回炉重造了

-直方图均衡化——此处有实验

        作用:显示大量灰度细节和高动态范围的图像,对比度很好的图片,它的直方图一般都是均衡的

        如何做?——此处有可能出大题哦!!!    

-直方图匹配

        怎么做?题目会告诉你灰度级,概率分布和目标概率分布

--- 滤波处理

各种滤波器:线性的滤波器(要知道如何证明线性和非线性)、非线性滤波器(各自举例)

        证明是线性的(这里只有傅里叶变换的例题了私密马赛)

         线性滤波有:均值滤波器

        满足下列式子的都是线性滤波器(W代表滑动窗口)

        非线性滤波有:(次序统计滤波器)中值滤波,最大最小值滤波(就是块A的中值是a,块B的中值是b,块A+B的中值如果是a+b那就是中值的,但显然不可能,所以中值滤波非线性)

常见滤波器

·均值滤波——平滑线性滤波器:模糊、使图像联通、去噪,又叫低通滤波器

·次序统计滤波器:最有名的是中值,它可以很好的去除椒盐噪声

·索比尔算子——边缘检测:一阶差分

·拉普拉斯算子——锐化:二阶差分

不论是哪个锐化滤波器,都是基于一阶差分or二阶差分的:一阶导数通常对灰度阶跃(边缘)有更强的响应——二阶导数对细节有更强的响应比如线和点

 二阶导数-它们对线的响应比对步进的响应更强,对点的响应比对线的响应更强-比一阶导数更适合图像增强-更简单的实现和扩展

 还有一种锐化算法:Unsharp Masking,就是用原图减去原图的模糊版,得到的就是原图的细节

卷积操作如何处理边缘像素?

        在卷积操作开始之前,先增加边缘像素:复制最边缘像素、是以最边缘像素为轴对称复制、以一个常量像素值填充


4.频域滤波

---傅里叶变换DFT:快速傅里叶变换FFT

引用一段大神的话来解释频域和空域的对应关系:傅里叶变换就是通过数学的方法反向分解复杂的信号,使之成为一个个简单的正弦信号,那么问题来了,这么多简单的信号,每个正弦信号都在时域图上画出来也没有什么意义,人类只需要记住每个正弦信号的相位和角频率就ok了,那么随时随地我们都可以制造这些简单的信号,把它们在时域上相加,就会再现相同的复杂信号,这时,频域的意义就凸现了,频域就是记录每个简单正弦信号相位角频率的方式,分别用幅度谱相位谱来表示

下面这一页的公式要会

注意一下最后面的频域空域变换等价式子,因为这个出过题(如下)

相位和幅度哪个影响大?

相位

频谱混叠是什么?

采样频率小于信号最大频率的两倍时候出现频率混叠问题。我们知道频率是物质在单位时间内完成周期性变化的次数,可以理解为完成一次的标志是一个开始和一个结束,假设在1s中完成了5次变化,如果采样频率小于10次,都没有办法表示每一个周期变化的开始和结束,那么两个周期之间就会叠在一起

---卷积定理

函数卷积傅立叶变换是函数傅立叶变换的乘积:就是说,在空域函数(某个滤波器)先卷积再傅里叶变换,相当于这个函数先傅里叶变换到频域,然后再与原图像相乘。

 然后知道这些就可以在频域设计各种滤波器了!

在频域上的滤波器设计:陷波滤波器、低通滤波器、高通滤波器

※巴特沃斯滤波器(这个老师有重点强调)

※傅里叶变换的整个流程(频域滤波的基本步骤)——此处有实验!

 具体的做法(一共六个步骤!)

①给定一个大小为M×N的输入图像f(x,y),形成一个大小为P×Q的填充图像fp (x,y)。通常,我们选择P=2M和Q=2N 其他部分补零

②将fp(x,y)乘以(-1)x+y使其频谱中心化

③傅里叶变换计算F(u,v)

④设计滤波器并滤波:生成实对称滤波器函数H(u,v),大小为P×Q,中心为(P/2, Q/2)。得到G(u,v) = H(u,v)F(u,v)

⑤G做逆傅里叶变换得到gp:gp(x,y) = {real[ifft(G(u,v))]}(-1)x+y,这里强调一下(1).取结果的实部和( 2).乘以(-1)x+y

⑥从gp(x,y)的左上象限提取M×N区域,得到最终处理结果g(x,y)

-频域的高斯滤波器

高斯滤波器的傅里叶变换还是高斯函数

如果在频域高斯函数是非常瘦长的,那么它的空域状态就是比较宽大的

两个高斯函数可以构建一个高通滤波器,或者 1-一个高斯函数

-频域的三个低通滤波器

---理想滤波器 ILPF:振铃

解释理想滤波器振铃效应出现的原因?期中考试有考哦!

将频域的理想滤波器傅里叶变换到空域会发现函数长这个样子,旁瓣会产生振铃

---巴特沃斯滤波器BLPF——这里有实验

需要人定的参数是n和D0,但是n越大越会有振铃

 

---高斯函数滤波器

-参数解释D0(截止频率)D是(u,v)到中心点的欧式距离

这里引申出一个问题,如何寻找合适的截止频率D0?一般根据保留功率谱的百分比来确定的

 

 -相对应的频域的三个高通滤波器

用1减去低通滤波器 

还有他们分别在空域的样子

巴特沃斯

 

高斯

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Karon_NeverAlone

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值