02、姿态解算---向量认识

目录

一、向量的基础知识

1、向量的定义

2、一些特殊向量

    2.1、单位向量

    2.2、零向量

    2.3、向量相等

3、向量的加减法    

    3.1、向量的加法

    3.2、向量的减法

    3.3、向量加法的运算规律

    3.4、向量的加减法满足的性质

4、实数与向量的乘积

    4.1、实数λ与向量的乘积

    4.2、数乘向量的运算规律

5、向量的坐标表示及运算

6、向量的数量积

6.1、向量的数量积

6.2、坐标运算:

6.3、向量数量积的运算律:

二、姿态解算中用的向量知识分析

1、向量的点积

2、向量的叉积

3、点积和叉积在姿态解算中的作用

一、向量的基础知识

1、向量的定义

         向量:既有大小,又有方向的量叫做向量。

        可以用一个小写字母“\vec{a}”表示;也可以用两个大写字母“\vec{AB}”表示,A表示起点,B表示终点。

2、一些特殊向量

    2.1、单位向量

        单位向量用“\vec{e}”表示,其长度为1,\vec{e} = \pm\frac{\vec{AB}}{AB},用|\vec{AB}|表示\vec{AB}的长度。

    2.2、零向量

        长度为0的向量叫做零向量,记作“\vec{0}”。

    2.3、向量相等

        长度相等,方向相同的向量称为相等向量,记作\vec{a}=\vec{b}

3、向量的加减法    

    3.1、向量的加法

        向量的加法满足三角形和平行四边形法则:

        \vec{AB}+\vec{AC}=\vec{BD}

        \vec{AB}+\vec{BC}=\vec{AC}

    3.2、向量的减法

        \vec{AC}-\vec{AB}=\vec{BC}

    3.3、向量加法的运算规律

        ①、交换律: \vec{a}+\vec{b}=\vec{b}+\vec{a}        

        ②、结合律:\vec{a}+(\vec{b}+\vec{c}) = (\vec{a}+\vec{b})+\vec{c}

    3.4、向量的加减法满足的性质

        \left | \vec{a}-\vec{b} \right |< \left | \vec{a} +\vec{b}\right |< \left | \vec{a} \right |+\left | \vec{b} \right |

4、实数与向量的乘积

    4.1、实数λ与向量的乘积

        实数λ与向量\vec{a}的乘积是一个向量,记作λ\vec{a},长度为|λ||\vec{a}|

    4.2、数乘向量的运算规律

        设λ、μ为实数:

        ①、(λ + μ)\vec{a} = λ\vec{a} + μ\vec{a}

        ②、λ(μ\vec{a}) = λμ\vec{a}

        ③、λ(\vec{a}+\vec{b}) = λ\vec{a} + λ\vec{b}

5、向量的坐标表示及运算

        ①、直角坐标系中点A的坐标为(x,y),则\vec{OA}=(x,y)

        ②、\vec{a}=(x1,y1),\vec{b}=(x2,y2)

        \vec{a}+\vec{b}=(x1+x2,y1+y2)

        \vec{a}-\vec{b}=(x1-x2,y1-y2)

        \lambda \vec{a}=(\lambda x1,\lambda y1)

        ③、若点A(x1,y1),点B(x2,y2),则\vec{AB}=(x1-x2,y1-y2)

6、向量的数量积

    6.1、向量的数量积

        \vec{a}\cdot \vec{b}=|\vec{a}||\vec{b}|cos<\vec{a},\vec{b}>    ==> cos<\vec{a},\vec{b}> =\frac{\vec{a}\vec{b}}{|\vec{a}|\cdot |\vec{b}|}

    6.2、坐标运算:

        \vec{a}\cdot \vec{b}=x1x2+y1y2

        当\vec{a}\perp \vec{b}时,有\vec{a}\cdot \vec{b}=0 ==>x1x2+y1y2=0

    6.3、向量数量积的运算律:

        ①、交换律:  \vec{a}\cdot\vec{b} =\vec{b}\cdot\vec{a}

        ②、分配律:(\vec{a}+\vec{b})\cdot \vec{c}=\vec{a}\cdot \vec{c}+\vec{b}\cdot \vec{c}

        ③、结合律:\lambda (\vec{a}\cdot \vec{b})=(\lambda \vec{a})\cdot \vec{b}=\vec{a}\cdot (\lambda \vec{b})

二、姿态解算中用的向量知识分析

1、向量的点积

        设有向量\vec{A}=(x1,y1,z1),\vec{B}=(x2,y2,z2),两向量的夹角为θ,两向量的点积定义为:

\vec{A}\cdot \vec{B}=|\vec{A}||\vec{B}|cos\theta

        其运算结果是一个常量,是一个长度。就是一个向量在另外一个向量上面的投影,如下图所示:

2、向量的叉积

        设有向量\vec{A}=(x1,y1,z1),\vec{B}=(x2,y2,z2),两个向量之间的夹角为θ。

        两个向量叉乘结果还是一个向量,叉积定义为如下:

\vec{A}\times \vec{B}=(y1z2-y2z1,x2z1-x1z2,x1y2-x2y1)

        |\vec{A}\times \vec{B}|=|\vec{A}||\vec{B}|sin\theta其集合意义为以|\vec{A}|,|\vec{B}|为边长的平行四边形的面积。

        物理意义:利用向量的叉乘可以创造出一个新的维度,这个维度独立于线圈的这个空间,并且它是垂直于先前的空间。因此,这个新的维度空间可以当成目标运动的参考系。图形示例如下:

3、点积和叉积在姿态解算中的作用

        后面在姿态解算中会用到旋转矩阵,在旋转矩阵和计算旋转矩阵的时候就会用到向量的点积和叉积公式。具体后面解算的时候会进行分析与应用。

  • 27
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值