05、姿态解算---四元素求姿态变换矩阵2

继续上一节,对四元素旋转矩阵的推导2

公式14:

        将公式12、13代入公式9中,得出:

        \vec{​{r}'}^{E}=\vec{r}^{E}+(1-cos\theta )U*U\vec{r}^{E}+U\vec{r}^{E}sin\theta

               =[I+(1-cos\theta )U*U+Usin\theta ]\vec{r}^{E} 

        其中I为单位矩阵:I=\begin{bmatrix} 1 &0 &0 \\ 0 &1 & 0\\ 0& 0 & 1 \end{bmatrix}

公式15:

        三角函数半角公式、倍角公式:

        1-cos\theta =2sin^{2}\frac{\theta}{2}

        sin\theta =2sin\frac{\theta }{2}cos\frac{\theta }{2}

公式16:

        将公式15代入公式14得:

      \vec{​{r}'}^{E}=[I+2sin^{2}\frac{\theta }{2}U*U+2Usin\frac{\theta }{2}cos\frac{\theta }{2}]\vec{r}^{E}  

公式17:

        令D=[I+2sin^{2}\frac{\theta }{2}U*U+2Usin\frac{\theta }{2}cos\frac{\theta }{2}] 

        则有:\vec{​{r}'}^{E}=D\vec{r}^{E}

公式18:

        我们做的所有推导都是求旋转之后的{R}'和旋转之前的R之间的关系。D的公式包含了旋转轴和旋转角度的信息,这样旋转矩阵实际上就是求D的旋转矩阵。

        由于在没有旋转之前,物体坐标系(b系)与地理坐标系重合,则有:

        \vec{r}^{E}=\vec{r}^{b0}

公式19:

        对于物体来说,在转动过程中,位置向量与物体的坐标系之间的相对角度位置始终不变,即有:

        r^{b0}=\vec{​{r}'}^{b}

公式20:

        将公式19代入公式18,则有:

        \vec{r}^{E}=\vec{​{r}'}^{b}

公式21:

        将公式20代入公式17,得出:

        \vec{​{r}'}^{E}=D\vec{​{r}'}^{b}

公式22:

        记D为物体坐标系至地址坐标系的坐标变换矩阵,记为:

        c_{b}^{E}=D=[I+2Usin\frac{\theta }{2}cos\frac{\theta }{2}+2sin^{2}\frac{\theta }{2}U*U]

        在数学中四元素定义为:\vec{Q}(q0,q1,q2,q3)=q0+q1\vec{i}+q2\vec{j}+q3\vec{k}

        令:U=\begin{bmatrix} 0 & -n & m\\ n&0 &-l \\ -m &l & 0 \end{bmatrix}

        则有:

D = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0& 1 \end{bmatrix}+2cos\frac{\theta }{2}\begin{bmatrix} 0 & -nsin\frac{\theta }{2} &msin\frac{\theta }{2} \\ nsin\frac{\theta }{2} & 0 &-lsin\frac{\theta }{2} \\ -msin\frac{\theta }{2} & lsin\frac{\theta }{2}& 0 \end{bmatrix}+2\begin{bmatrix} -(m^{2}+n^{2})sin^{2}\frac{\theta }{2} & lmsin^{2}\frac{\theta }{2} & nlsin^{2}\frac{\theta }{2}\\ lmsin^{2}\frac{\theta }{2}& -(l^{2}+n^{2})sin^{2}\frac{\theta }{2} & mnsin^{2}\frac{\theta }{2}\\ nlsin^{2}\frac{\theta }{2}&mnsin^{2}\frac{\theta }{2} & -(m^{2}+l^{2})sin^{2}\frac{\theta }{2} \end{bmatrix}

公式23:

       ①、 四元素的三角形式为:cos\frac{\theta }{2}+(l\vec{i}+m\vec{j}+n\vec{k})sin\frac{\theta }{2}=cos\frac{\theta }{2}+\vec{u}sin\frac{\theta }{2}

        可以记为:q0=cos\frac{\theta }{2},q1=lsin\frac{\theta }{2},q2=msin\frac{\theta }{2},q3=nsin\frac{\theta }{2}

       ②、 用q0,q1,q2,q3表示的四元素和三角形式表示的四元素联系起来:

        \vec{Q}=q0+q1\vec{i}+q2\vec{j}+q3\vec{k}=cos\frac{\theta }{2}+(l\vec{i}+m\vec{j}+n\vec{k})sin\frac{\theta }{2}=cos\frac{\theta }{2}+\vec{u^{E}}sin\frac{\theta }{2}

        从以上推导,我们可以得出,从一个坐标系变换到另一个坐标系的变换矩阵,通过构造四元素可进一步得到以四元素表示的变换矩阵。构造的四元素描述了物体的顶点转动问题,当我们只关心物体系相对于地理系的角度位置时,可以认为物体系是经过无中间过程的一次性等效旋转形成的。四元素包含了这种等效信息,\vec{u}^{E}为旋转轴和旋转方向,θ为旋转角度:

        将q0=cos\frac{\theta }{2},q1=lsin\frac{\theta }{2},q2=msin\frac{\theta }{2},q3=nsin\frac{\theta }{2}代入公式22得出:

c_{b}^{E}=\begin{bmatrix} 1 & 0 &0 \\ 0 &1 &0 \\ 0& 0 &1 \end{bmatrix}+\begin{bmatrix} 0 &-2q0q3 & 2q0q2\\ 2q0q3 & 0&-2q0q1 \\ -2q0q2 & 2q0q1 & 0 \end{bmatrix}+\begin{bmatrix} -2(q2^{2}+q3^{2}) & 2q1q2 &2q1q3 \\ 2q1q2&-2(q1^{2}+q3^{2}) & 2q2q3\\ 2q1q3& 2q2q3& -2(q2^{2}+q1^{2}) \end{bmatrix}=\begin{bmatrix} 1-2(q2^{2}+q3^{2}) &2(q1q2-q0q3) &2(q0q2+q1q3) \\ 2(q0q3+q1q2)& 1-2(q1^{2}+q3^{2}) & 2(q2q3-q0q1)\\ 2(q1q3-q0q2) &2(q0q1+q2q3) &1 -2(q2^{2}+q1^{2}) \end{bmatrix}

公式24:

       根据四元素的范数
, 以及四元素的三角表达式,见《03、姿态解算---四元素》,可求得:

        \left \| \vec{Q} \right \|=q0^{2}+q1^{2}+q2^{2}+q3^{2}=cos^{2}\frac{\theta }{2}+(l^{2}+m^{2}+n^{2})sin^{2}\frac{\theta }{2}=1

        其中\vec{u}为旋转轴,也为单位向量,其模为1,也即有l^{2}+m^{2}+n^{2} = 1,又有sin^{2}\frac{\theta }{2}+cos^{2}\frac{\theta }{2}=1,故有\left \| \vec{Q} \right \|=1

        所以可以得出描述物体转动的四元素为规范化的四元素。

        将\left \| \vec{Q} \right \|=q0^{2}+q1^{2}+q2^{2}+q3^{2}=1代入公式23中,可以得出:

        c_{b}^{E}=\begin{bmatrix} q0^{2}+q1^{2}+q2^{2}+q3^{2}&2(q1q2-q0q3) &2(q1q3+q0q2) \\ 2(q1q2+q0q3) & q0^{2}-q1^{2}+q2^{2}-q3^{2} &2(q2q3-q0q1) \\ 2(q1q3-q0q2)& 2(q2q3+q0q1) & q0^{2}-q1^{2}-q2^{2}+q3^{2} \end{bmatrix}

4、最终得出四元素表示的旋转矩阵

c_{b}^{E}=\begin{bmatrix} q0^{2}+q1^{2}+q2^{2}+q3^{2}&2(q1q2-q0q3) &2(q1q3+q0q2) \\ 2(q1q2+q0q3) & q0^{2}-q1^{2}+q2^{2}-q3^{2} &2(q2q3-q0q1) \\ 2(q1q3-q0q2)& 2(q2q3+q0q1) & q0^{2}-q1^{2}-q2^{2}+q3^{2} \end{bmatrix}

  • 19
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值