近年来,AI 计算的需求不断增长,各大厂商都在推出自己的 AI 计算硬件,其中 NVIDIA、AMD、华为 Ascend 和 Apple M1 Metal 是目前主要的 AI 计算平台。本文将对它们进行全面对比,总结它们的优缺点以及适合的使用场景。
1. 各 GPU 体系结构概述
特性 | NVIDIA (A100, H100, RTX 40 系列) | AMD (MI300, RX 7000 系列) | 华为 Ascend (910, 310, 910B) | Apple M1 Metal GPU |
---|---|---|---|---|
架构 | CUDA & Tensor Cores (Ampere, Hopper) | ROCm, CDNA (RDNA 用于消费级) | Da Vinci AI 计算架构 | Apple Silicon |
内存类型 | HBM2e, GDDR6X | HBM2e, GDDR6 | HBM2e | 统一内存 (LPDDR4X/5) |
软件生态 | CUDA, cuDNN, TensorRT | ROCm, HIP, OpenCL | CANN, MindSpore | Metal, Core ML |
AI 计算加速 | Tensor Cores, FP16, BF16, INT8 | Matrix Cores, BF16, INT8 | AI 计算单元, FP16, INT8 | Metal Performance Shaders, Neural Engine |
2. 深度学习和 AI 计算性能
特性 | NVIDIA | AMD | 华为 Ascend | Apple M1 Metal |
---|---|---|---|---|
AI 训练性能 | ✅✅✅✅✅ (最强) | ✅✅✅ (生态仍在完善) | ✅✅✅✅ (在中国市场较强) | ✅✅ (训练能力有限) |
AI 推理性能 | ✅✅✅✅✅ (TensorRT 优化) | ✅✅✅ (Metal AI 支持) | ✅✅✅✅ (MindSpore 优化) | ✅✅✅ (Neural Engine 适用于推理) |
AI 框架支持 | TensorFlow, PyTorch (最佳) | PyTorch, TensorFlow (ROCm) | MindSpore, TensorFlow (有限) | TensorFlow for Mac, Core ML |
数据精度支持 (FP16, BF16, INT8 等) | FP32, FP16, BF16, INT8, INT4 | FP32, FP16, BF16, INT8 | FP32, FP16, BF16, INT8 | FP32, FP16 |
关键结论
- NVIDIA 仍然是 AI 训练的最佳选择,凭借 Tensor Cores 和 CUDA,训练大模型最有优势。
- AMD 正在追赶,但 ROCm 生态尚不完善,支持的框架有限。
- 华为 Ascend 在中国市场表现不错,主要依赖 MindSpore 进行优化。
- Apple M1 更适合 AI 推理和 Mac 端优化应用,但 不适用于大规模训练。
3. 软件生态与兼容性
特性 | NVIDIA (CUDA) | AMD (ROCm) | 华为 Ascend (MindSpore, CANN) | Apple Metal (Core ML) |
---|---|---|---|---|
AI 框架支持 | 最佳 (TensorFlow, PyTorch, JAX, Triton) | 还在发展中 (PyTorch, TensorFlow) | 主要优化 MindSpore | 适用于 macOS (Core ML, TensorFlow for Mac) |
云端支持 | AWS, Google Cloud, Azure | 部分云服务支持 ROCm | 华为云 | macOS 生态 |
行业应用 | ✅✅✅✅✅ (标准) | ✅✅✅ (发展中) | ✅✅✅✅ (主要在中国) | ✅✅ (仅限 macOS) |
关键结论
- NVIDIA 生态最完善,CUDA、cuDNN 和 TensorRT 已成为行业标准。
- AMD 的 ROCm 生态还不成熟,虽然性能在提升,但兼容性仍然不足。
- 华为 Ascend 主要用于中国市场,全球支持度较低。
- Apple M1 适用于 Mac 端 AI 应用,但不适用于大型深度学习训练。
4. 功耗与硬件优势
特性 | NVIDIA | AMD | 华为 Ascend | Apple M1 Metal |
---|---|---|---|---|
功耗 (效率) | 中等到高 | 高 | 中等 | 低(效率最高) |
计算能力 | 训练 AI 最强 | 通用计算强 | AI 计算专用优化 | 适用于低功耗 AI 任务 |
形态 | 独立 GPU | 独立 GPU | AI NPU | 集成 GPU |
关键结论
- Apple M1 是最省电的 GPU,但不适用于 AI 训练大模型。
- NVIDIA 和 AMD 的独立 GPU 需要更高功耗,适合数据中心和专业 AI 计算。
- 华为 Ascend 平衡了 AI 计算与功耗,在 AI 训练和推理方面均有不错表现。
最终结论:哪个更适合你?
应用场景 | 最佳选择 |
---|---|
大规模 AI 训练 (LLMs, Transformer 训练) | ✅ NVIDIA (A100, H100) |
通用 AI 计算 (科学计算, 机器学习研究) | ✅ AMD (MI300, 生态仍在发展) |
中国市场企业级 AI 计算 | ✅ 华为 Ascend (910, MindSpore 优化) |
Mac 端 AI 应用 & 推理 | ✅ Apple M1 (Metal + Core ML 优化) |
云端 AI 计算 (AWS, Azure, GCP) | ✅ NVIDIA |
总结
- NVIDIA 仍然是 AI 计算市场的霸主,CUDA、TensorRT 以及丰富的软件生态使其成为最好的 AI 训练平台。
- AMD 正在努力追赶,ROCm 生态仍然在发展中,但已有进步。
- 华为 Ascend 在国内市场表现不错,适用于企业级 AI 训练,但全球市场支持度较低。
- Apple M1 更适合 macOS 生态的 AI 应用,但不适用于大规模 AI 训练。
如果你的目标是 训练大型 AI 模型,那么 NVIDIA 仍然是最佳选择。
如果你是 macOS 开发者,Apple M1 Metal 在推理方面表现不错,但无法替代 NVIDIA 进行训练。
其它
Deepseek 推理的时候可以支持AMD GPUs和华为的Ascend NPUs
GitHub - deepseek-ai/DeepSeek-V3