YOLO11的Backbone优化:EfficientViT

ackbone:EfficientViT

论文地址:https://openaccess.thecvf.com/content/CVPR2023/papers/Liu_EfficientViT_Memory_Efficient_Vision_Transformer_With_Cascaded_Group_Attention_CVPR_2023_paper.pdf

代码仓库:https://github.com/microsoft/Cream/tree/main/EfficientViT

摘要:视觉transformer由于其高模型能力而取得了巨大的成功。然而,它们卓越的性能伴随着沉重的计算成本,这使得它们不适合实时应用。在这篇论文中,本文提出了一个高速视觉transformer家族,名为EfficientViT。本文发现现有的transformer模型的速度通常受到内存低效操作的限制,特别是在MHSA中的张量重塑和单元函数。因此,本文设计了一种具有三明治布局的新构建块,即在高效FFN层之间使用单个内存绑定的MHSA,从而提高了内存效率,同时增强了信道通信。此外,本文发现注意图在头部之间具有很高的相似性,从而导致计算冗余。为了解决这个问题,本文提出了一个级联的群体注意模块,以不同的完整特征分割来馈送注意头,不仅节省了计算成本,而且提高了注意多样性。综合实验表明,高效vit优于现有的高效模型,在速度和精度之间取得了良好的平衡。例如,本文的EfficientViT-M5在准确率上比MobileNetV3-Large高出1.9%,而在Nvidia V100 GPU和Intel Xeon CPU上的吞吐量分别高出40.4%和45.2%。与最近的高效型号MobileViT-XXS相比,efficientvitt - m2的精度提高了1.8%,同时在GPU/CPU上运行速度提高了5.8 ×/3.7 ×,转换为ONNX格式时速度提高了7.4×。

本文通过分析DeiT和Swin两个Transformer架构得出如下结论:

  • 适当降低MHSA层利用率可以在提高模型性能的同时提高访存效率

  • 在不同的头部使用不同的通道划分特征,而不是像MHSA那样对所有头部使用相同的全特征,可以有效地减少注意力计算冗余

  • 典型的通道配置,即在每个阶段之后将通道数加倍或对所有块使用等效通道,可能在最后几个块中产生大量冗余

  • 在维度相同的情况下,Q、K的冗余度比V大得多

  • a new building block with a sandwich layout(减少self-attention的次数):之前是一个block self-attention->fc->self-attention->fc->self-attention->fc->...N次数;现在是一个block fc->self-attention->fc;不仅能够提升内存效率而且能够增强通道间的计算

  • cascaded group attention:让多头串联学习特征:第一个头学习完特征后,第二个头利用第一个头学习到的特征的基础上再去学习(原来的transformer是第二个头跟第一个头同时独立地去学习),同理第三个头学习时也得利用上第二个头学习的结果再去学习

Efficientvit模型结构如下图所示:

图片

a memory-efficient sandwich layout

图片

图片

Cascaded Group Attention:解决了原来模型中多头重复学习(学习到的特征很多都是相似的)的问题,这里每个头学到的特征都不同,而且越往下面的头学到的特征越丰富。

图片

  • Q是主动查询的行为,特征比K更加丰富,所以额外做了个Token Interation

  • Q进行self-attention之前先通过多次分组卷积再一次学习

Efficientvit变体模型结构如下表所示:

图片

EfficientViT结构代码

# --------------------------------------------------------
# EfficientViT Model Architecture for Downstream Tasks
# Copyright (c) 2022 Microsoft
# Written by: Xinyu Liu
# --------------------------------------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
import itertools

from timm.models.layers import SqueezeExcite

import numpy as np
import itertools

__all__ = ['EfficientViT_M0', 'EfficientViT_M1', 'EfficientViT_M2', 'EfficientViT_M3', 'EfficientViT_M4', 'EfficientViT_M5']

class Conv2d_BN(torch.nn.Sequential):
    def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1,
                 groups=1, bn_weight_init=1, resolution=-10000):
        super().__init__()
        self.add_module('c', torch.nn.Conv2d(
            a, b, ks, stride, pad, dilation, groups, bias=False))
        self.add_module('bn', torch.nn.BatchNorm2d(b))
        torch.nn.init.constant_(self.bn.weight, bn_weight_init)
        torch.nn.init.constant_(self.bn.bias, 0)

    @torch.no_grad()
    def fuse(self):
        c, bn = self._modules.values()
        w = bn.weight / (bn.running_var + bn.eps)**0.5
        w = c.weight * w[:, None, None, None]
        b = bn.bias - bn.running_mean * bn.weight / \
            (bn.running_var + bn.eps)**0.5
        m = torch.nn.Conv2d(w.size(1) * self.c.groups, w.size(
            0), w.shape[2:], stride=self.c.stride, padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups)
        m.weight.data.copy_(w)
        m.bias.data.copy_(b)
        return m

def replace_batchnorm(net):
    for child_name, child in net.named_children():
        if hasattr(child, 'fuse'):
            setattr(net, child_name, child.fuse())
        elif isinstance(child, torch.nn.BatchNorm2d):
            setattr(net, child_name, torch.nn.Identity())
        else:
            replace_batchnorm(child)
            

class PatchMerging(torch.nn.Module):
    def __init__(self, dim, out_dim, input_resolution):
        super().__init__()
        hid_dim = int(dim * 4)
        self.conv1 = Conv2d_BN(dim, hid_dim, 1, 1, 0, resolution=input_resolution)
        self.act = torch.nn.ReLU()
        self.conv2 = Conv2d_BN(hid_dim, hid_dim, 3, 2, 1, groups=hid_dim, resolution=input_resolution)
        self.se = SqueezeExcite(hid_dim, .25)
        self.conv3 = Conv2d_BN(hid_dim, out_dim, 1, 1, 0, resolution=input_resolution // 2)

    def forward(self, x):
        x = self.conv3(self.se(self.act(self.conv2(self.act(self.conv1(x))))))
        return x


class Residual(torch.nn.Module):
    def __init__(self, m, drop=0.):
        super().__init__()
        self.m = m
        self.drop = drop

    def forward(self, x):
        if self.training and self.drop > 0:
            return x + self.m(x) * torch.rand(x.size(0), 1, 1, 1,
                                              device=x.device).ge_(self.drop).div(1 - self.drop).detach()
        else:
            return x + self.m(x)


class FFN(torch.nn.Module):
    def __init__(self, ed, h, resolution):
        super().__init__()
        self.pw1 = Conv2d_BN(ed, h, resolution=resolution)
        self.act = torch.nn.ReLU()
        self.pw2 = Conv2d_BN(h, ed, bn_weight_init=0, resolution=resolution)

    def forward(self, x):
        x = self.pw2(self.act(self.pw1(x)))
        return x


class CascadedGroupAttention(torch.nn.Module):
    r""" Cascaded Group Attention.

    Args:
        dim (int): Number of input channels.
        key_dim (int): The dimension for query and key.
        num_heads (int): Number of attention heads.
        attn_ratio (int): Multiplier for the query dim for value dimension.
        resolution (int): Input resolution, correspond to the window size.
        kernels (List[int]): The kernel size of the dw conv on query.
    """
    def __init__(self, dim, key_dim, num_heads=8,
                 attn_ratio=4,
                 resolution=14,
                 kernels=[5, 5, 5, 5],):
        super().__init__()
        self.num_heads = num_heads
        self.scale = key_dim ** -0.5
        self.key_dim = key_dim
        self.d = int(attn_ratio * key_dim)
        self.attn_ratio = attn_ratio

        qkvs = []
        dws = []
        for i in range(num_heads):
            qkvs.append(Conv2d_BN(dim // (num_heads), self.key_dim * 2 + self.d, resolution=resolution))
            dws.append(Conv2d_BN(self.key_dim, self.key_dim, kernels[i], 1, kernels[i]//2, groups=self.key_dim, resolution=resolution))
        self.qkvs = torch.nn.ModuleList(qkvs)
        self.dws = torch.nn.ModuleList(dws)
        self.proj = torch.nn.Sequential(torch.nn.ReLU(), Conv2d_BN(
            self.d * num_heads, dim, bn_weight_init=0, resolution=resolution))

        points = list(itertools.product(range(resolution), range(resolution)))
        N = len(points)
        attention_offsets = {}
        idxs = []
        for p1 in points:
            for p2 in points:
                offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
                if offset not in attention_offsets:
                    attention_offsets[offset] = len(attention_offsets)
                idxs.append(attention_offsets[offset])
        self.attention_biases = torch.nn.Parameter(
            torch.zeros(num_heads, len(attention_offsets)))
        self.register_buffer('attention_bias_idxs',
                             torch.LongTensor(idxs).view(N, N))

    @torch.no_grad()
    def train(self, mode=True):
        super().train(mode)
        if mode and hasattr(self, 'ab'):
            del self.ab
        else:
            self.ab = self.attention_biases[:, self.attention_bias_idxs]

    def forward(self, x):  # x (B,C,H,W)
        B, C, H, W = x.shape
        trainingab = self.attention_biases[:, self.attention_bias_idxs]
        feats_in = x.chunk(len(self.qkvs), dim=1)
        feats_out = []
        feat = feats_in[0]
        for i, qkv in enumerate(self.qkvs):
            if i > 0: # add the previous output to the input
                feat = feat + feats_in[i]
            feat = qkv(feat)
            q, k, v = feat.view(B, -1, H, W).split([self.key_dim, self.key_dim, self.d], dim=1) # B, C/h, H, W
            q = self.dws[i](q)
            q, k, v = q.flatten(2), k.flatten(2), v.flatten(2) # B, C/h, N
            attn = (
                (q.transpose(-2, -1) @ k) * self.scale
                +
                (trainingab[i] if self.training else self.ab[i])
            )
            attn = attn.softmax(dim=-1) # BNN
            feat = (v @ attn.transpose(-2, -1)).view(B, self.d, H, W) # BCHW
            feats_out.append(feat)
        x = self.proj(torch.cat(feats_out, 1))
        return x


class LocalWindowAttention(torch.nn.Module):
    r""" Local Window Attention.

    Args:
        dim (int): Number of input channels.
        key_dim (int): The dimension for query and key.
        num_heads (int): Number of attention heads.
        attn_ratio (int): Multiplier for the query dim for value dimension.
        resolution (int): Input resolution.
        window_resolution (int): Local window resolution.
        kernels (List[int]): The kernel size of the dw conv on query.
    """
    def __init__(self, dim, key_dim, num_heads=8,
                 attn_ratio=4,
                 resolution=14,
                 window_resolution=7,
                 kernels=[5, 5, 5, 5],):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.resolution = resolution
        assert window_resolution > 0, 'window_size must be greater than 0'
        self.window_resolution = window_resolution
        
        self.attn = CascadedGroupAttention(dim, key_dim, num_heads,
                                attn_ratio=attn_ratio, 
                                resolution=window_resolution,
                                kernels=kernels,)

    def forward(self, x):
        B, C, H, W = x.shape
               
        if H <= self.window_resolution and W <= self.window_resolution:
            x = self.attn(x)
        else:
            x = x.permute(0, 2, 3, 1)
            pad_b = (self.window_resolution - H %
                     self.window_resolution) % self.window_resolution
            pad_r = (self.window_resolution - W %
                     self.window_resolution) % self.window_resolution
            padding = pad_b > 0 or pad_r > 0

            if padding:
                x = torch.nn.functional.pad(x, (0, 0, 0, pad_r, 0, pad_b))

            pH, pW = H + pad_b, W + pad_r
            nH = pH // self.window_resolution
            nW = pW // self.window_resolution
            # window partition, BHWC -> B(nHh)(nWw)C -> BnHnWhwC -> (BnHnW)hwC -> (BnHnW)Chw
            x = x.view(B, nH, self.window_resolution, nW, self.window_resolution, C).transpose(2, 3).reshape(
                B * nH * nW, self.window_resolution, self.window_resolution, C
            ).permute(0, 3, 1, 2)
            x = self.attn(x)
            # window reverse, (BnHnW)Chw -> (BnHnW)hwC -> BnHnWhwC -> B(nHh)(nWw)C -> BHWC
            x = x.permute(0, 2, 3, 1).view(B, nH, nW, self.window_resolution, self.window_resolution,
                       C).transpose(2, 3).reshape(B, pH, pW, C)

            if padding:
                x = x[:, :H, :W].contiguous()

            x = x.permute(0, 3, 1, 2)

        return x


class EfficientViTBlock(torch.nn.Module):
    """ A basic EfficientViT building block.

    Args:
        type (str): Type for token mixer. Default: 's' for self-attention.
        ed (int): Number of input channels.
        kd (int): Dimension for query and key in the token mixer.
        nh (int): Number of attention heads.
        ar (int): Multiplier for the query dim for value dimension.
        resolution (int): Input resolution.
        window_resolution (int): Local window resolution.
        kernels (List[int]): The kernel size of the dw conv on query.
    """
    def __init__(self, type,
                 ed, kd, nh=8,
                 ar=4,
                 resolution=14,
                 window_resolution=7,
                 kernels=[5, 5, 5, 5],):
        super().__init__()
            
        self.dw0 = Residual(Conv2d_BN(ed, ed, 3, 1, 1, groups=ed, bn_weight_init=0., resolution=resolution))
        self.ffn0 = Residual(FFN(ed, int(ed * 2), resolution))

        if type == 's':
            self.mixer = Residual(LocalWindowAttention(ed, kd, nh, attn_ratio=ar, \
                    resolution=resolution, window_resolution=window_resolution, kernels=kernels))
                
        self.dw1 = Residual(Conv2d_BN(ed, ed, 3, 1, 1, groups=ed, bn_weight_init=0., resolution=resolution))
        self.ffn1 = Residual(FFN(ed, int(ed * 2), resolution))

    def forward(self, x):
        return self.ffn1(self.dw1(self.mixer(self.ffn0(self.dw0(x)))))


class EfficientViT(torch.nn.Module):
    def __init__(self, img_size=400,
                 patch_size=16,
                 frozen_stages=0,
                 in_chans=3,
                 stages=['s', 's', 's'],
                 embed_dim=[64, 128, 192],
                 key_dim=[16, 16, 16],
                 depth=[1, 2, 3],
                 num_heads=[4, 4, 4],
                 window_size=[7, 7, 7],
                 kernels=[5, 5, 5, 5],
                 down_ops=[['subsample', 2], ['subsample', 2], ['']],
                 pretrained=None,
                 distillation=False,):
        super().__init__()

        resolution = img_size
        self.patch_embed = torch.nn.Sequential(Conv2d_BN(in_chans, embed_dim[0] // 8, 3, 2, 1, resolution=resolution), torch.nn.ReLU(),
                           Conv2d_BN(embed_dim[0] // 8, embed_dim[0] // 4, 3, 2, 1, resolution=resolution // 2), torch.nn.ReLU(),
                           Conv2d_BN(embed_dim[0] // 4, embed_dim[0] // 2, 3, 2, 1, resolution=resolution // 4), torch.nn.ReLU(),
                           Conv2d_BN(embed_dim[0] // 2, embed_dim[0], 3, 1, 1, resolution=resolution // 8))

        resolution = img_size // patch_size
        attn_ratio = [embed_dim[i] / (key_dim[i] * num_heads[i]) for i in range(len(embed_dim))]
        self.blocks1 = []
        self.blocks2 = []
        self.blocks3 = []
        for i, (stg, ed, kd, dpth, nh, ar, wd, do) in enumerate(
                zip(stages, embed_dim, key_dim, depth, num_heads, attn_ratio, window_size, down_ops)):
            for d in range(dpth):
                eval('self.blocks' + str(i+1)).append(EfficientViTBlock(stg, ed, kd, nh, ar, resolution, wd, kernels))
            if do[0] == 'subsample':
                #('Subsample' stride)
                blk = eval('self.blocks' + str(i+2))
                resolution_ = (resolution - 1) // do[1] + 1
                blk.append(torch.nn.Sequential(Residual(Conv2d_BN(embed_dim[i], embed_dim[i], 3, 1, 1, groups=embed_dim[i], resolution=resolution)),
                                    Residual(FFN(embed_dim[i], int(embed_dim[i] * 2), resolution)),))
                blk.append(PatchMerging(*embed_dim[i:i + 2], resolution))
                resolution = resolution_
                blk.append(torch.nn.Sequential(Residual(Conv2d_BN(embed_dim[i + 1], embed_dim[i + 1], 3, 1, 1, groups=embed_dim[i + 1], resolution=resolution)),
                                    Residual(FFN(embed_dim[i + 1], int(embed_dim[i + 1] * 2), resolution)),))
        self.blocks1 = torch.nn.Sequential(*self.blocks1)
        self.blocks2 = torch.nn.Sequential(*self.blocks2)
        self.blocks3 = torch.nn.Sequential(*self.blocks3)
        
        self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]

    def forward(self, x):
        outs = []
        x = self.patch_embed(x)
        x = self.blocks1(x)
        outs.append(x)
        x = self.blocks2(x)
        outs.append(x)
        x = self.blocks3(x)
        outs.append(x)
        return outs

EfficientViT_m0 = {
        'img_size': 224,
        'patch_size': 16,
        'embed_dim': [64, 128, 192],
        'depth': [1, 2, 3],
        'num_heads': [4, 4, 4],
        'window_size': [7, 7, 7],
        'kernels': [7, 5, 3, 3],
    }

EfficientViT_m1 = {
        'img_size': 224,
        'patch_size': 16,
        'embed_dim': [128, 144, 192],
        'depth': [1, 2, 3],
        'num_heads': [2, 3, 3],
        'window_size': [7, 7, 7],
        'kernels': [7, 5, 3, 3],
    }

EfficientViT_m2 = {
        'img_size': 224,
        'patch_size': 16,
        'embed_dim': [128, 192, 224],
        'depth': [1, 2, 3],
        'num_heads': [4, 3, 2],
        'window_size': [7, 7, 7],
        'kernels': [7, 5, 3, 3],
    }

EfficientViT_m3 = {
        'img_size': 224,
        'patch_size': 16,
        'embed_dim': [128, 240, 320],
        'depth': [1, 2, 3],
        'num_heads': [4, 3, 4],
        'window_size': [7, 7, 7],
        'kernels': [5, 5, 5, 5],
    }

EfficientViT_m4 = {
        'img_size': 224,
        'patch_size': 16,
        'embed_dim': [128, 256, 384],
        'depth': [1, 2, 3],
        'num_heads': [4, 4, 4],
        'window_size': [7, 7, 7],
        'kernels': [7, 5, 3, 3],
    }

EfficientViT_m5 = {
        'img_size': 224,
        'patch_size': 16,
        'embed_dim': [192, 288, 384],
        'depth': [1, 3, 4],
        'num_heads': [3, 3, 4],
        'window_size': [7, 7, 7],
        'kernels': [7, 5, 3, 3],
    }

def EfficientViT_M0(pretrained='', frozen_stages=0, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_m0):
    model = EfficientViT(frozen_stages=frozen_stages, distillation=distillation, pretrained=pretrained, **model_cfg)
    if pretrained:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)['model']))
    if fuse:
        replace_batchnorm(model)
    return model

def EfficientViT_M1(pretrained='', frozen_stages=0, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_m1):
    model = EfficientViT(frozen_stages=frozen_stages, distillation=distillation, pretrained=pretrained, **model_cfg)
    if pretrained:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)['model']))
    if fuse:
        replace_batchnorm(model)
    return model

def EfficientViT_M2(pretrained='', frozen_stages=0, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_m2):
    model = EfficientViT(frozen_stages=frozen_stages, distillation=distillation, pretrained=pretrained, **model_cfg)
    if pretrained:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)['model']))
    if fuse:
        replace_batchnorm(model)
    return model

def EfficientViT_M3(pretrained='', frozen_stages=0, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_m3):
    model = EfficientViT(frozen_stages=frozen_stages, distillation=distillation, pretrained=pretrained, **model_cfg)
    if pretrained:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)['model']))
    if fuse:
        replace_batchnorm(model)
    return model
    
def EfficientViT_M4(pretrained='', frozen_stages=0, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_m4):
    model = EfficientViT(frozen_stages=frozen_stages, distillation=distillation, pretrained=pretrained, **model_cfg)
    if pretrained:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)['model']))
    if fuse:
        replace_batchnorm(model)
    return model

def EfficientViT_M5(pretrained='', frozen_stages=0, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_m5):
    model = EfficientViT(frozen_stages=frozen_stages, distillation=distillation, pretrained=pretrained, **model_cfg)
    if pretrained:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)['model']))
    if fuse:
        replace_batchnorm(model)
    return model

def update_weight(model_dict, weight_dict):
    idx, temp_dict = 0, {}
    for k, v in weight_dict.items():
        # k = k[9:]
        if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
            temp_dict[k] = v
            idx += 1
    model_dict.update(temp_dict)
    print(f'loading weights... {idx}/{len(model_dict)} items')
    return model_dict

yolov5-efficientvit.yaml

backbone:
  # [from, number, module, args]
  [[-1, 1, EfficientViT_M0, []], # 4
   [-1, 1, SPPF, [1024, 5]],  # 5
  ]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈奕昆

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值