线性代数【八】二次型

本节为线性代数复习笔记的第八部分,二次型,主要包括:一般形二次型化为标准型二次型。

  一般形二次型指包括平方项也有混合项的二次型,所以目标就可以写为:
f = X T A X → ( X = Q Y ) Y T Λ Y f=X^TAX\rightarrow(X=QY)Y^T\Lambda Y f=XTAX(X=QY)YTΛY
  一般的步骤为:

  • (1) 写二次型对应矩阵A,求特征值 λ \lambda λ和特征向量 ξ \xi ξ
  • (2) 将 ξ i \xi_i ξi正交化,单位化得到 η i \eta_i ηi,写为正交阵 Q = ( η 1 , . . . , η n ) Q=(\eta_1,...,\eta_n) Q=(η1,...,ηn)(正交矩阵就是 A A T = E AA^T=E AAT=E);
  • (3) 记 Λ = Q T A Q \Lambda=Q^TAQ Λ=QTAQ,根据 X = Q Y X=QY X=QY,得到 f = Y T Λ Y f=Y^T\Lambda Y f=YTΛY

  eg.用正交变换化二次型 f ( x 1 , x 2 , x 3 ) = f(x_1,x_2,x_3)= f(x1,x2,x3)= 2 x 1 2 + 5 x 2 2 + 5 x 3 2 + 4 x 1 x 2 − 4 x 1 x 3 − 8 x 2 x 3 2x_1^2+5x_2^2+5x_3^2+4x_1x_2-4x_1x_3-8x_2x_3 2x12+5x22+5x32+4x1x24x1x38x2x3为标准形,并求所作的正交变换。

解:

(1)写出二次型对应的矩阵
A = [ 2 2 − 2 2 5 − 4 − 2 − 4 5 ] A=\left[\begin{matrix}2&2&-2\\2&5&-4\\-2&-4&5\end{matrix}\right] A=222254245

题外: A + A T A+A^T A+AT可以得到函数的海森矩阵。

(2)特征方程 ∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0,得到 ( λ − 1 ) 2 ( λ − 10 ) = 0 (\lambda-1)^2(\lambda-10)=0 (λ1)2(λ10)=0,则A由三个特征值: λ 1 = λ 2 = 1 , λ 3 = 10 \lambda_1=\lambda_2=1,\lambda_3=10 λ1=λ2=1,λ3=10:

  当 λ 1 = λ 2 = 1 \lambda_1=\lambda_2=1 λ1=λ2=1,特征向量 ξ 1 = [ − 2 , 1 , 0 ] T , ξ 2 = [ 2 , 0 , 1 ] T \xi_1=[-2,1,0]^T,\xi_2=[2,0,1]^T ξ1=[2,1,0]Tξ2=[2,0,1]T

  当 λ 3 = 10 \lambda_3=10 λ3=10,得特征向量 ξ 3 = [ 1 , 2 , − 2 ] T \xi_3=[1,2,-2]^T ξ3=[1,2,2]T

(3)对属于 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2的特征向量 ξ 1 , ξ 2 \xi_1,\xi_2 ξ1,ξ2进行标准正交化:

  取 η 1 = ξ 1 = [ − 2 , 1 , 0 ] T , η 2 = ξ 2 − ( ξ 2 , η 1 ) ( η 1 , η 1 ) η 1 \eta_1=\xi_1=[-2,1,0]^T,\eta_2=\xi_2-\frac{(\xi_2,\eta_1)}{(\eta_1,\eta_1)}\eta_1 η1=ξ1=[2,1,0]T,η2=ξ2(η1,η1)(ξ2,η1)η1 = [ 2 , 0 , 1 ] T − − 4 5 [ − 2 , 1 , 0 ] T = [ 2 5 , 4 5 , 1 ] T =[2,0,1]^T-\frac{-4}{5}[-2,1,0]^T=[\frac25,\frac45,1]^T =[2,0,1]T54[2,1,0]T=[52,54,1]T,不妨取 η 2 = [ 2 , 4 , 5 ] \eta_2=[2,4,5] η2=[2,4,5]

  再将 η 1 , η 2 , ξ 3 \eta_1,\eta_2,\xi_3 η1,η2,ξ3单位化, η 1 0 = [ − 2 5 , 1 5 , 0 ] T \eta_1^0=[\frac{-2}{\sqrt{5}},\frac1{\sqrt{5}},0]^T η10=[5 2,5 1,0]T, η 2 0 = [ − 2 3 5 , 4 3 5 , 5 3 5 ] T , η 3 0 = [ 1 3 , 2 3 , − 2 3 ] T \eta_2^0=[-\frac{2}{3\sqrt{5}},\frac{4}{3\sqrt{5}},\frac{5}{3\sqrt{5}}]^T,\eta_3^0=[\frac13,\frac23,-\frac23]^T η20=[35 2,35 4,35 5]T,η30=[31,32,32]T,得正交矩阵 Q = [ η 1 0 , η 2 0 , η 3 0 ] Q=[\eta^0_1,\eta^0_2,\eta^0_3] Q=[η10,η20,η30],令 X = Q Y X=QY X=QY,则原二次型化标准形为: f ( x 1 , x 2 , x 3 ) = X T A X → ( X = Q Y ) f(x_1,x_2,x_3)=X^TAX\rightarrow(X=QY) f(x1,x2,x3)=XTAX(X=QY) → Y T Q T A Q Y = y 1 2 + y 2 2 + 10 y 3 2 \rightarrow Y^TQ^TAQY=y_1^2+y_2^2+10y^2_3 YTQTAQY=y12+y22+10y32

  其中,正交变换为 X = Q Y = [ η 1 0 , η 2 0 , η 3 0 ] [ y 1 y 2 y 3 ] X=QY=[\eta^0_1,\eta^0_2,\eta^0_3]\left[\begin{matrix}y_1\\y_2\\y_3\end{matrix}\right] X=QY=[η10,η20,η30]y1y2y3


  设A,B为n阶实对称矩阵,若存在可逆矩阵C,使得 C T A C = B C^TAC=B CTAC=B,则称A与B合同,此时f(x)和g(y)为合同二次型。 f ( x ) = X T A X = ( c y ) T A ( c y ) f(x)=X^TAX=(cy)^TA(cy) f(x)=XTAX=(cy)TA(cy) = y T ( c T A c ) y = y T B Y = g ( y ) =y^T(c^TAc)y=y^TBY=g(y) =yT(cTAc)y=yTBY=g(y)

  标准形二次型只有平方项,对应矩阵为对角矩阵,而规范形二次型在标准形得基础上进一步要求系数只能为 ± 1 , 0 \pm 1,0 ±10


欢迎扫描二维码关注微信公众号 深度学习与数学[每天获取免费的大数据、AI等相关的学习资源、经典和最新的深度学习相关的论文研读,算法和其他互联网技能的学习,概率论、线性代数等高等数学知识的回顾]
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值