六、函数逼近

本文介绍了如何通过最小二乘法对给定数据进行m次多项式拟合,阐述了正则方程组的建立过程,并提及了如何通过Gram-Schmidt方法构造正交多项式以提高拟合精度。重点在于处理病态问题和权值正交化的解决方案。
摘要由CSDN通过智能技术生成

1 多项式拟合

对给定的数据组 ( x i , y i )   ( i = 1 , 2 , … , n ) (x_i,y_i)\ (i=1,2,\dots,n) (xi,yi) (i=1,2,,n),求一个 m m m次多项式 ( m < n ) (m<n) (m<n)

P m ( x ) = a 0 + a 1 x + ⋯ + a m x m ( 6 − 3 ) P_m(x)=a_0+a_1x+\cdots+a_mx^m\quad\quad\quad\quad(6-3) Pm(x)=a0+a1x++amxm(63)

使得:

∑ i = 1 n δ i 2 = ∑ i = 1 n [ y i − P m ( x i ) ] 2 = F ( a 0 , a 1 , … , a m ) ( 6 − 4 ) \sum\limits_{i=1}^n\delta_i^2=\sum\limits_{i=1}^n[y_i-P_m(x_i)]^2=F(a_0,a_1,\dots,a_m)\quad\quad\quad\quad(6-4) i=1nδi2=i=1n[yiPm(xi)]2=F(a0,a1,,am)(64)

为最小,即选取参数 a i ( i = 0 , 1 , … , m ) a_i(i=0,1,\dots,m) ai(i=0,1,,m),使得:

F ( a 0 , a 1 , ⋯   , a m ) = ∑ i = 1 n [ y i − P m ( x i ) ] 2 = min ⁡ ψ ∈ H ∑ i = 1 n [ y i − ψ ( x i ) ] 2 F(a_0,a_1,\cdots,a_m)=\sum\limits_{i=1}^n[y_i-P_m(x_i)]^2=\min\limits_{\psi\in H}\sum\limits_{i=1}^n[y_i-\psi(x_i)]^2 F(a0,a1,,am)=i=1n[yiPm(xi)]2=ψHmini=1n[yiψ(xi)]2

其中H为至多m次多项式集合。这就是数据的多项式拟合, P m ( x ) P_m(x) Pm(x)称为这组数据的最小二乘m次拟合多项式。

由多元函数取极值的必要条件,得方程组:

∂ F ∂ a j = − 2 ∑ i = 1 n [ y i − ∑ k = 0 m a k x i k ] x i j = 0 ( j = 0 , 1 , ⋯   , m ) \frac{\partial F}{\partial a_j}=-2\sum\limits_{i=1}^n[y_i-\sum\limits_{k=0}^ma_kx_i^k]x_i^j=0\quad\quad(j=0,1,\cdots,m) ajF=2i=1n[yik=0makxik]xij=0(j=0,1,,m)

移项得:

∑ k = 0 m a k ( ∑ i = 1 n x i k + j ) = ∑ i = 1 n y i x i j ( j = 0 , 1 , ⋯   , m ) \sum\limits_{k=0}^ma_k(\sum\limits_{i=1}^nx_i^{k+j})=\sum\limits_{i=1}^ny_ix_i^j\quad\quad(j=0,1,\cdots,m) k=0mak(i=1nxik+j)=i=1nyixij(j=0,1,,m)

即:

{ n a 0 + a 1 ∑ i = 1 n x i + a 2 ∑ i = 1 n x i 2 + ⋯ + a m ∑ i = 1 n x i m = ∑ i = 1 n y i a 0 ∑ i = 1 n x i + a 1 ∑ i = 1 n x i 2 + a 2 ∑ i = 1 n x i 3 + ⋯ + a m ∑ i = 1 n x i m + 1 = ∑ i = 1 n y i x i ⋯ ⋯ ⋯ ⋯ ⋯ a 0 ∑ i = 1 n x i m + a 1 ∑ i = 1 n x i m + 1 + a 2 ∑ i = 1 n x i m + 2 + ⋯ + a m ∑ i = 1 n x i 2 m = ∑ i = 1 n y i x i m ( 6 − 5 ) \begin{cases}na_0+a_1\sum\limits_{i=1}^nx_i+a_2\sum\limits_{i=1}^nx_i^2+\cdots+a_m\sum\limits_{i=1}^nx_i^m=\sum\limits_{i=1}^ny_i\\a_0\sum\limits_{i=1}^nx_i+a_1\sum\limits_{i=1}^nx_i^2+a_2\sum\limits_{i=1}^nx_i^3+\cdots+a_m\sum\limits_{i=1}^nx_i^{m+1}=\sum\limits_{i=1}^ny_ix_i\\\cdots\cdots\cdots\cdots\cdots\\a_0\sum\limits_{i=1}^nx_i^m+a_1\sum\limits_{i=1}^nx_i^{m+1}+a_2\sum\limits_{i=1}^nx_i^{m+2}+\cdots+a_m\sum\limits_{i=1}^nx_i^{2m}=\sum\limits_{i=1}^ny_ix_i^m\end{cases}\quad\quad\quad\quad(6-5) na0+a1i=1nxi+a2i=1nxi2++ami=1nxim=i=1nyia0i=1nxi+a1i=1nxi2+a2i=1nxi3++ami=1nxim+1=i=1nyixia0i=1nxim+a1i=1nxim+1+a2i=1nxim+2++ami=1nxi2m=i=1nyixim(65)

这是最小二乘拟合多项式的系数 a k   ( k = 0 , 1 , … , m ) a_k\ (k=0,1,\dots,m) ak (k=0,1,,m) 应满足的方程组,称为正则方程组或法方程组。

待补充

最小二乘法的正则方程组一般是病态的,当m较大时更是如此,这使得按上述过程求解时误差较大。如果适当地选取 ϕ k ( x )   ( k = 0 , 1 , … , m ) \phi_k(x)\ (k=0,1,\dots,m) ϕk(x) (k=0,1,,m),使得:

( φ k , φ k ) = ∑ i = 1 n w i φ k 2 ( x i ) ( k = 0 , 1 , … , m ) ( φ k , φ k ) = 0 ( k ≠ j ) ( 6 − 11 ) (\varphi_k,\varphi_k)=\sum\limits_{i=1}^nw_i\varphi_k^2(x_i)\quad(k=0,1,\dots,m)\quad\quad\quad\quad\quad\quad\\(\varphi_k,\varphi_k)=0\quad(k\ne j)\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(6-11) (φk,φk)=i=1nwiφk2(xi)(k=0,1,,m)(φk,φk)=0(k=j)(611)

则方程组(6-10)的系数矩阵成对角形,正则方程组(6-9)极易解出,其解为:

a k = ( y , φ k ) ( φ k , φ k ) = ∑ i = 1 n w i y i φ k ( x i ) ∑ i = 1 n w i φ k 2 ( x i ) ( k = 0 , 1 , ⋯   , m ) ( 6 − 12 ) a_k=\frac{(y,\varphi_k)}{(\varphi_k,\varphi_k)}=\frac{\sum\limits_{i=1}^nw_iy_i\varphi_k(x_i)}{\sum\limits_{i=1}^nw_i\varphi_k^2(x_i)}\quad(k=0,1,\cdots,m)\quad\quad\quad\quad\quad(6-12) ak=(φk,φk)(y,φk)=i=1nwiφk2(xi)i=1nwiyiφk(xi)(k=0,1,,m)(612)

最小二乘函数为:

φ ( x ) = ∑ k = 0 m a k φ k ( x ) = ∑ k = 0 m ( y , φ k ) ( φ k , φ k ) φ k ( x ) ( 6 − 13 ) \varphi(x)=\sum\limits_{k=0}^ma_k\varphi_k(x)=\sum\limits_{k=0}^m\frac{(y,\varphi_k)}{(\varphi_k,\varphi_k)}\varphi_k(x)\quad\quad\quad\quad\quad(6-13) φ(x)=k=0makφk(x)=k=0m(φk,φk)(y,φk)φk(x)(613)

定义6.1

称满足条件(6-11)的函数族 φ 0 ( x ) , φ 1 ( x ) , ⋯   , φ m ( x ) \varphi_0(x),\varphi_1(x),\cdots,\varphi_m(x) φ0(x),φ1(x),,φm(x)为以 { w i }   ( i = 1 , 2 , ⋯   , n ) \{w_i\}\ (i=1,2,\cdots,n) {wi} (i=1,2,,n)为权关于点集 { x 1 , x 2 , ⋯   , x n } \{x_1,x_2,\cdots,x_n\} {x1,x2,,xn}的正交函数族。

类似于定理6.4的证明,可导出下列多项式系:

{ φ 0 ( x ) = 1 φ 1 ( x ) = x − α 1 φ k ( x ) = ( x − α k ) φ k − 1 ( x ) − β k φ k − 2 ( x ) ( k = 2 , 3 , ⋯   , m ) ( 6 − 14 ) \begin{cases}\varphi_0(x)=1\\\varphi_1(x)=x-\alpha_1\\\varphi_k(x)=(x-\alpha_k)\varphi_{k-1}(x)-\beta_k\varphi_{k-2}(x)\quad(k=2,3,\cdots,m)\end{cases}\quad\quad\quad\quad(6-14) φ0(x)=1φ1(x)=xα1φk(x)=(xαk)φk1(x)βkφk2(x)(k=2,3,,m)(614)

是以 w i   ( i = 1 , 2 , ⋯   , n ) w_i\ (i=1,2,\cdots,n) wi (i=1,2,,n)为权关于点集 { 5 , x 2 , ⋯   , x n } \{5 ,x_2,\cdots,x_n\} {5,x2,,xn}的正交函数族,其中:

$$$$

2

2.2 格拉姆-施密特(Gram-Schmidt)方法

构造正交多项式的一般方法由以下定理给出:

定理 6.4

按以下方式定义的多项式集合 { φ 0 , φ 1 , ⋯   , φ n } \{\varphi_0,\varphi_1,\cdots,\varphi_n\} {φ0,φ1,,φn}是区间 [ a , b ] [a,b] [a,b]上关于权函数 w ( x ) ≥ 0 ( w ( x ) ≢ 0 ) w(x)\ge0(w(x)\not\equiv0) w(x)0(w(x)0)的正交函数族。

φ 0 ( x ) = 1 φ 1 ( x ) = x − α 1 φ k ( x ) = ( x − α k ) φ k − 1 ( x ) − β k φ k − 2 ( x ) ( k = 2 , 3 , ⋯   , n ) ( 6 − 16 ) \varphi_0(x)=1\quad\quad\\\varphi_1(x)=x-\alpha_1\\\varphi_k(x)=(x-\alpha_k)\varphi_{k-1}(x)-\beta_k\varphi_{k-2}(x)\quad(k=2,3,\cdots,n)\quad\quad\quad\quad(6-16) φ0(x)=1φ1(x)=xα1φk(x)=(xαk)φk1(x)βkφk2(x)(k=2,3,,n)(616)

其中:

α k = ( x φ k − 1 , φ k − 1 ) ( φ k − 1 , φ k − 1 ) \alpha_k=\frac{(x\varphi_{k-1},\varphi_{k-1})}{(\varphi_{k-1},\varphi_{k-1})} αk=(φk1,φk1)(xφk1,φk1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值